
Copyright © 2009-17 The Software Defined Radio Forum Inc. - All Rights Reserved.

Transceiver Facility
where software defines the radio

Transceiver Facility PIM specification

Document WINNF-08-S-0008

Version V2.0.0

7 June 2017

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page ii
All Rights Reserved.

TERMS, CONDITIONS & NOTICES

This document has been prepared by the work group of WInnF project SCA-2015-001 “Transceiver Next” to
assist The Software Defined Radio Forum Inc. (or its successors or assigns, hereafter “the Forum”). It may
be amended or withdrawn at a later time and it is not binding on any member of the Forum or of the
Transceiver Next work group.

Contributors to this document that have submitted copyrighted materials (the Submission) to the Forum
for use in this document retain copyright ownership of their original work, while at the same time granting
the Forum a non-exclusive, irrevocable, worldwide, perpetual, royalty-free license under the Submitter’s
copyrights in the Submission to reproduce, distribute, publish, display, perform, and create derivative
works of the Submission based on that original work for the purpose of developing this document under
the Forum's own copyright.

Permission is granted to the Forum’s participants to copy any portion of this document for legitimate
purposes of the Forum. Copying for monetary gain or for other non-Forum related purposes is prohibited.

THIS DOCUMENT IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER, AND IN PARTICULAR, ANY
WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY DISCLAIMED. ANY USE OF THIS SPECIFICATION SHALL
BE MADE ENTIRELY AT THE IMPLEMENTER'S OWN RISK, AND NEITHER THE FORUM, NOR ANY OF ITS
MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY IMPLEMENTER OR THIRD
PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE
USE OF THIS DOCUMENT.

Recipients of this document are requested to submit, with their comments, notification of any relevant
patent claims or other intellectual property rights of which they may be aware that might be infringed by
any implementation of the specification set forth in this document, and to provide supporting
documentation.

This document was developed following the Forum's policy on restricted or controlled information (Policy
009) to ensure that that the document can be shared openly with other member organizations around the
world. Additional Information on this policy can be found here:
http://www.wirelessinnovation.org/page/Policies_and_Procedures

Although this document contains no restricted or controlled information, the specific implementation of
concepts contain herein may be controlled under the laws of the country of origin for that implementation.
Readers are encouraged, therefore, to consult with a cognizant authority prior to any further development.

Wireless Innovation Forum ™ and SDR Forum ™ are trademarks of the Software Defined Radio Forum Inc.

http://www.wirelessinnovation.org/page/Policies_and_Procedures

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page iii
All Rights Reserved.

Table of Contents

TERMS, CONDITIONS & NOTICES ... ii
Table of Contents ... iii
List of Figures .. vi
List of Tables ... viii

Contributors ... ix
Referenced documents .. x
1 Introduction .. 1

1.1 Specification approach ... 1
1.1.1 Model Driven Architecture (MDA) .. 1

1.1.2 Implementation feedback collection ... 2
1.1.3 Conventions .. 2

1.1.4 Document structure ... 2

1.2 Transceiver concepts .. 2
1.2.1 Channels .. 3
1.2.2 I/O signals ... 4

1.2.3 Processing phases .. 5
1.2.4 Transmission ... 5

1.2.5 Reception .. 8
1.2.6 Inter-burst characterization ... 10
1.2.7 Transceiver time .. 11

1.3 Transceiver API .. 11
1.3.1 Services ... 11

1.3.2 Services groups ... 12
1.3.3 Implementation of services ... 12

2 Services .. 14
2.1 Provide services .. 14
2.2 Use services .. 14

2.3 States machines .. 15
2.3.1 Channels .. 15

2.3.2 CreationControl ... 20
2.3.3 RadioSilence ... 24
2.3.4 Retuning .. 25

2.4 Services groups description .. 26
2.4.1 Transceiver::Management ... 26

2.4.2 Transceiver::BurstControl ... 27
2.4.3 Transceiver::BasebandSignal .. 31

2.4.4 Transceiver::Tuning .. 33
2.4.5 Transceiver::Notifications ... 34
2.4.6 Transceiver::GainControl .. 36
2.4.7 Transceiver::TransceiverTime .. 37
2.4.8 Transceiver::Strobing .. 38

3 Service primitives and attributes .. 39
3.1 Service primitives ... 39

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page iv
All Rights Reserved.

3.1.1 Transceiver::Management::Reset .. 39
3.1.2 Transceiver::Management::RadioSilence ... 40
3.1.3 Transceiver::BurstControl::DirectCreation ... 42

3.1.4 Transceiver::BurstControl::RelativeCreation ... 44
3.1.5 Transceiver::BurstControl::AbsoluteCreation .. 46
3.1.6 Transceiver::BurstControl::StrobedCreation .. 48
3.1.7 Transceiver::BurstControl::Termination ... 50
3.1.8 Transceiver::BasebandSignal::SamplesReception .. 52

3.1.9 Transceiver::BasebandSignal::SamplesTransmission .. 54
3.1.10 Transceiver::BasebandSignal::RxPacketsLengthControl 56
3.1.11 Transceiver::Tuning::InitialTuning ... 57
3.1.12 Transceiver::Tuning::Retuning ... 60

3.1.13 Transceiver::Notifications::Events .. 62
3.1.14 Transceiver::Notifications::Errors ... 64

3.1.15 Transceiver::GainControl::GainChanges .. 67
3.1.16 Transceiver::GainControl::GainLocking ... 68
3.1.17 Transceiver::TransceiverTime::TimeAccess ... 71

3.1.18 Transceiver::Strobing::AppplicationStrobe ... 73
3.2 Exceptions .. 74

3.2.1 Specification .. 74
3.2.2 Associated properties .. 76
3.2.3 Behavior requirements .. 76

3.3 Attributes .. 77
3.3.1 Channels attributes .. 77

3.3.2 Processing attributes ... 78

3.4 Types .. 80

3.4.1 Base assumptions .. 80
3.4.2 BasebandPacket .. 80

3.4.3 BlockLength .. 80
3.4.4 BasebandSample ... 81
3.4.5 BurstNumber ... 81
3.4.6 CarrierFreq .. 81

3.4.7 Delay ... 81
3.4.8 Error .. 82
3.4.9 Event ... 82
3.4.10 Gain ... 82
3.4.11 IQ ... 83

3.4.12 MetaData ... 83
3.4.13 PacketLength ... 83

3.4.14 SampleNumber .. 84
3.4.15 StrobeSource ... 84
3.4.16 TimeSpec ... 84
3.4.17 TuningPreset .. 85

4 Properties .. 86
4.1 Introduction .. 86

4.1.1 Properties .. 86

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page v
All Rights Reserved.

4.1.2 Properties naming ... 86
4.1.3 Portability engineering support ... 86
4.1.4 Profiles .. 87

4.2 Structure ... 88
4.3 Behavior ... 90
4.4 Notifications ... 91
4.5 Interface declaration ... 93
4.6 Initialization .. 93

4.7 Parameters validity ... 94
4.8 Rapidity .. 95
4.9 Storage .. 97
4.10 Levels .. 97

4.11 Channelization .. 97
4.12 Temporal accuracy .. 100

4.13 Invocation lead time ... 100
4.14 Invocation delay .. 101
4.15 Worst-case execution time (WCET) ... 102

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page vi
All Rights Reserved.

List of Figures

Figure 1 Overview of Transceiver Facility 1
Figure 2 Principle of transmission processing phase 5
Figure 3 Transmit impulse response 7
Figure 4 Nominal and specific Tx bursts shapings 8

Figure 5 Principle of reception processing phase 8
Figure 6 Receive impulse response 10
Figure 7 Principle of inter-burst duration 10
Figure 8 Principle of inter-processing duration 11
Figure 9 Channels statechart 15

Figure 10 CreationControl statechart 21
Figure 11 RadioSilence statechart 24

Figure 12 Retuning statechart 25

Figure 13 Services of Management services group 26
Figure 14 Management::Reset interface 26
Figure 15 Management::RadioSilence interface 27

Figure 16 Services of BurstControl services group 27
Figure 17 BurstControl::DirectCreation interface 28

Figure 18 BurstControl::RelativeCreation interface 29
Figure 19 BurstControl::AbsoluteCreation interface 29
Figure 20 BurstControl::StrobedCreation interface 30

Figure 21 BurstControl::Termination interface 30
Figure 22 Services of BasebandSignal services group 31

Figure 23 BasebandSignal::SamplesReception interface 31
Figure 24 BasebandSignal::SamplesTransmission interface 32

Figure 25 BasebandSignal::RxPacketsLengthControl interface 32
Figure 26 Services of Tuning services group 33
Figure 27 Tuning::InitialTuning interface 33

Figure 28 Tuning::Retuning interface 34
Figure 29 Services of Notifications services group 34

Figure 30 Notifications::Events interface 35
Figure 31 Notifications::Errors interface 35
Figure 32 Services of GainControl services group 36

Figure 33 GainControl::GainChanges interface 36
Figure 34 GainControl::AGCActivation interface 37

Figure 35 Service of TransceiverTime services group 37
Figure 36 TransceiverTime::TimeAccess interface 38

Figure 37 Service of Strobing services group 38
Figure 38 Strobing::ApplicationStrobe interface 38
Figure 39 Principle of startRadioSilence() 40
Figure 40 Principle of stopRadioSilence() 41
Figure 41 Principle of startBurst() 42
Figure 42 Principle of scheduleRelativeBurst() 44
Figure 43 Principle of scheduleAbsoluteBurst() 46

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page vii
All Rights Reserved.

Figure 44 Principle of scheduleStrobedBurst() 48
Figure 45 Principle of pushRxPacket() 52
Figure 46 Principle of pushTxPacket() 54

Figure 47 Principle of setTuning() 58
Figure 48 Principle of retune() 60
Figure 49 Principle of notifyEvent() 63
Figure 50 Principle of notifyError() 64
Figure 51 Principle of indicateGain() 67

Figure 52 Principle of lockGain() 69
Figure 53 Principle of unlockGain() 70
Figure 54 Principle of getCurrentTime() 71
Figure 55 Principle of getLastStartTime() 72

Figure 56 Specification of fields of channel masks 99

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page viii
All Rights Reserved.

List of Tables

Table 1 Provide services of Transceiver API 14
Table 2 Use services of Transceiver API 14
Table 3 Specification of startBurst() parameters 43
Table 4 Specification of scheduleRelativeBurst() parameters 45

Table 5 Specification of scheduleAbsoluteBurst() parameters 47
Table 6 Specification of strobe sources 48
Table 7 Specification of scheduleStrobedBurst() parameters 49
Table 8 Specification of setBlockLength() parameters 50
Table 9 Specification of pushRxPacket() parameters 53

Table 10 Specification of pushTxPacket() parameters 55
Table 11 Specification of setRxPacketsLength() parameters 57

Table 12 Specification of setTuning() parameters 59

Table 13 Specification of retune() parameters 61
Table 14 Specification of events 63
Table 15 Specification of notifyEvent() parameters 63

Table 16 Specification of errors 65
Table 17 Specification of notifyError() parameters 66

Table 18 Specification of errors mitigation behaviors 67
Table 19 Specification of indicateGain() parameters 68
Table 20 Specification of getCurrentTime() parameters 71

Table 21 Specification of getLastStartTime() parameters 72
Table 22 Specification of general exceptions 74

Table 23 Specification of range exceptions 75
Table 24 Specification of MILT exceptions 76

Table 25 Structure properties 88
Table 26 Behavior properties 90
Table 27 Notification properties 91

Table 28 Interface declaration properties 93
Table 29 Initialization properties 93

Table 30 Parameters validity properties 94
Table 31 Rapidity properties 95
Table 32 Tuning conditions 96

Table 33 Duplex conditions 96
Table 34 Storage properties 97

Table 35 Level properties 97
Table 36 Channelization properties 98

Table 37 Temporal accuracy properties 100
Table 38 Invocation lead time properties 101
Table 39 Invocation delay properties 101
Table 40 WCET properties of provide operations 102
Table 41 WCET properties of use operations 102

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page ix
All Rights Reserved.

Contributors

The following individuals and their organization of affiliation are credited as Contributors to

development of the specification, for having been involved in the work group that developed the

draft then approved by WInnF member organizations:

▪ Marc Adrat, FKIE,

▪ Claude Bélisle, NordiaSoft,

▪ Eric Campbell, Harris Corporation,

▪ Jean-Philippe Delahaye, DGA,

▪ Antonio Di Rocco, Leonardo,

▪ David Hagood, Cobham,

▪ Frédéric Leroy, ENSTA,

▪ Sarah Miller, Rockwell-Collins,

▪ David Murotake, Hitachi Kokusai Electric,

▪ Eric Nicollet, Thales Communications & Security,

▪ Peter Troll, Rohde & Schwarz,

▪ Dmitri Zvernick, NordiaSoft.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page x
All Rights Reserved.

Referenced documents

[Ref1] The Fast Guide to Model Driven Architecture, Cephas Consulting Corp, 2006.
URL: http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf

[Ref2] Communication Systems, Simon Haykin, John Whiley & Sons, Inc, 2001.

[Ref3] Digital and Analog Communication Systems, L.W. Couch, 8th edition, Pearson, 2013.

[Ref4] OMG Unified Modeling Language (OMG UML), The Object Management Group,

formal/2015-03-01, Version 2.5, March 2015.
URL: http://www.omg.org/spec/UML/2.5

[Ref5] IDL Profiles for Platform-Independent Modeling of SDR Applications, The Wireless

Innovation Forum, WINNF-14-S-0016, Version 2.0.1, 12 June 2015.
URL: http://www.wirelessinnovation.org/assets/work_products/Specifications/winnf-14-s-0016-v1.0.0%20-
%20pim%20idl%20profiles.zip

[Ref6] Application Interface Definition Language Platform Independent Model Profiles, SCA 4.1

Appendix E-1, Joint Tactical Networking Center, 20 August 2015.
URL: http://www.public.navy.mil/jtnc/sca/Documents/SCAv4_1_Final/SCA_4.1_App_E-
1_ApplicationIdlPimProfiles.pdf

[Ref7] Joint Tactical Radio System Standard Timing Service Application Program Interface, Joint

Tactical Networking Center, Version 1.4.4, 26 June 2013.
URL: http://www.public.navy.mil/jtnc/sca/Documents/SCA_APIs/API_1.4.4_20130626_TimingService.pdf

The provided URLs were successfully accessed at the release date of the specification.

http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
http://www.omg.org/spec/UML/2.5
http://www.wirelessinnovation.org/assets/work_products/Specifications/winnf-14-s-0016-v1.0.0%20-%20pim%20idl%20profiles.zip
http://www.wirelessinnovation.org/assets/work_products/Specifications/winnf-14-s-0016-v1.0.0%20-%20pim%20idl%20profiles.zip
http://www.public.navy.mil/jtnc/sca/Documents/SCA_APIs/API_1.4.4_20130626_TimingService.pdf

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 1
All Rights Reserved.

Transceiver Facility PIM specification

1 Introduction

The Transceiver Facility standardizes a service-oriented Transceiver Application Programming

Interface (Transceiver API) and associated Transceiver Properties, in support of portability of

radio applications and openness of reconfigurable transceiver implementations.

The transceiver is the processing stage situated between the antenna and the radio physical layer

baseband processing. Its I/O signals are the baseband signal and the radio signal (see section

1.2.2), as depicted in following figure:

Radio
application

Transceiver API

Transceiver Properties

Transceiver

Radio
signal

Baseband
signal

Antenna

Figure 1 Overview of Transceiver Facility

1.1 Specification approach

1.1.1 Model Driven Architecture (MDA)

The Transceiver Facility structure is inspired by application of the Object Management Group

(OMG) Model Driven Architecture (MDA) approach (see [Ref1]) to the technical domain of

physical layer engineering of software-defined radio (SDR) systems.

The Transceiver Facility is composed of a core specification, denoted as the Platform-Independent

Model (PIM) specification (this document) and appendices.

The core specification answers to the definition of a PIM provided by [Ref1]: “A PIM exhibits a

sufficient degree of independence so as to enable its mapping to one or more platforms. This is

commonly achieved by defining a set of services in a way that abstracts out technical details. Other

models then specify a realization of these services in a platform specific manner.”.

Appendices are Platform-Specific Model (PSM) specifications specified for a number of

programming paradigms supporting implementation of the PIM software interfaces.

The PSM specifications answer to the definition of a PSM provided by [Ref1]: “A PSM combines

the specifications in the PIM with the details required to stipulate how a system uses a particular

type of platform. If the PSM does not include all of the details necessary to produce an

implementation of that platform it is considered abstract (meaning that it relies on other explicit or

implicit models which do contain the necessary details).”.

When no standard PSM specification is applicable, a non-standard PSM has to be formally

specified through a specification structured like standard PSMs.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 2
All Rights Reserved.

1.1.2 Implementation feedback collection

Users of a core specification and standard PSM specifications are invited to submit implementation

feedback to the WInnF for consideration in perspective improvement of the Transceiver Facility.

Users of a non-standard PSM specification are invited to submit the non-standard specification as

an input document to the WInnF to be considered for future inclusion in the Transceiver Facility.

1.1.3 Conventions

The PIM specification refers itself as “the specification” in the remaining of the document.

A normative clause of the specification is a particular sentence that can be:

▪ A definition: defines a general concept, contains “is/are defined as”; name of the

defined concept is formatted in italics,

▪ A declaration: specifies a formal concept (e.g. a state, an interface, an error), contains

“is/are specified as/by”; name of the declared concept is formatted according to its

nature,

▪ A requirement: specifies a condition to be respected by a transceiver, contains “shall”.

The term "unspecified" indicates an aspect that is not specified by the specification, more specific

aspects being left to user’s decisions.

1.1.4 Document structure

The PIM specification is structured as follows:

▪ Section 1, Introduction: defines essential aspects, provides an overview of the specified

services groups,

▪ Section 2, Services: specifies states machines, API services groups, provide and use

services,

▪ Section 3, Service Primitives and Attributes: specifies API primitives, exceptions,

attributes and types,

▪ Section 4, Properties: specifies properties characterizing transceiver instances,

▪ Section 5, PSM specifications: specifies rules pertaining to derived PSM specifications.

1.2 Transceiver concepts

A transceiver is defined as a subsystem of a radio platform that transforms, when it transmits,

baseband signal(s) into radio signal(s) and, when it receives, radio signal(s) into baseband signal(s).

A transceiver instance is defined as one particular implementation of a transceiver.

One or several transceiver instances can be available on a radio platform and one or several

transceiver instances can be used by a radio application.

The remainder of the specification is applicable to any particular transceiver instance, assumed

fully independent of any other transceiver instance eventually available on a given radio platform.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 3
All Rights Reserved.

1.2.1 Channels

1.2.1.1 Tx channels

A transmit channel (Tx channel) is defined as an elementary part of a transceiver instance that

transforms, when it transmits, one baseband signal (see section 1.2.2.1) into one radio signal (see

section 1.2.2.2).

A transmission is defined as a phase during which a Tx channel continuously transmits.

Up-conversion is defined as the signal processing performed by a Tx channel during a

transmission.

A transceiver instance can have zero to several Tx channels. All Tx channels of a specific

transceiver instance are controlled simultaneously by the radio application and operate

synchronously.

TX_CHANNELS (see section 4.2) specifies the number of Tx channels of a transceiver instance.

1.2.1.2 Rx channels

A receive channel (Rx channel) is defined as an elementary part of a transceiver instance that

transforms, when it receives, one radio signal into one baseband signal.

A reception is defined as a phase during which an Rx channel continuously receives.

Down-conversion is defined as the signal processing performed by an Rx channel during a

reception.

A transceiver instance can have zero to several Rx channels. All Rx channels of a specific

transceiver instance are controlled simultaneously by the radio application and operate

synchronously.

RX_CHANNELS (see section 4.2) specifies the number of Rx channels of a transceiver instance.

1.2.1.3 Transceiver categories

A simplex transceiver is defined as a transceiver with transmit or receive capability, but not both.

A simplex transceiver has one or many Tx channels, or one or many Rx channels.

A duplex transceiver is defined as a transceiver with one or many Tx channels and one or many Rx

channels.

A full-duplex transceiver is defined as a duplex transceiver which transmission and reception

phases are fully independent and can occur simultaneously.

A half-duplex transceiver is defined as a duplex transceiver with no simultaneous transmission and

reception phases, due to sharing of critical processing resources between its Tx channels and Rx

channels.

DUPLEX (see section 4.2) specifies if a duplex transceiver is half-duplex or full-duplex.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 4
All Rights Reserved.

1.2.2 I/O signals

1.2.2.1 Baseband signal

A baseband signal (𝑠𝐵𝐵) is defined as the complex digital signal exchanged between a radio

application and Tx channels or Rx channels.

The baseband sampling frequency (𝐹𝑠
𝐵𝐵) is defined as the sampling frequency of a baseband

signal.

A baseband sample (𝑠𝐵𝐵[𝑛]) is defined as a complex sample of the baseband signal, with

𝑠𝐵𝐵[𝑛] = 𝐼 + 𝑖. 𝑄, where 𝑖 = √−1.

The in-phase component (I) of a baseband sample is defined as its real part.

The quadrature component (Q) of a baseband sample is defined as its imaginary part.

�̇�𝐵𝐵 is defined as the Fourier transform of 𝑠𝐵𝐵.

𝐿𝐵𝐵 is defined as the level of the baseband signal expressed in decibels relative to full scale

(dBFS) for the applied numerical representation.

The full-scale (FS) of the numerical representation of the baseband signal is specified as,

depending on value of IQ_TYPE (see section 4.5):

▪ 2^15-1 if IQ_TYPE is equal to 16bit,

▪ 2^31-1 if IQ_TYPE is equal to 32bit,

▪ 1.0 if IQ_TYPE is equal to floatingPoint.

𝐿𝐵𝐵 shall be computed according to 𝐿𝐵𝐵 = 10. log10 (
1

𝑁
∑ |𝑠𝐵𝐵[𝑛0+𝑖]|2𝑖=𝑁−1

𝑖=0

𝐹𝑆2).

1.2.2.2 Radio signal

The radio signal (𝑠𝑅𝐹) is defined as the analogue voltage signal at the output of Tx channel, during

a Transmission, or at the input of Rx channel, during a Reception.

Radio signal is typically taken at the antenna connector, but can be defined elsewhere depending on

usage context.

The carrier frequency (fc) is defined as the radio frequency around which the radio signal spectrum

is positioned.

Note: the carrier frequency is the center frequency of the Tx signal measured spectrum when the

baseband signal is symmetrical. It is not always the case, e.g. in the case of single side band

modulations.

�̇�𝑅𝐹 is defined as the Fourier transform of 𝑠𝑅𝐹.

𝐿𝑅𝐹 is defined as the level of the radio signal expressed in decibels relative to one milliwatt (dBm).

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 5
All Rights Reserved.

1.2.3 Processing phases

A processing phase is defined as a continuous period of time during which Rx channels or Tx

channels perform a signal processing transformation.

The activation time of a processing phase is defined as the time at which the processing phase

starts.

The termination time of a processing phase is defined as the time at which the processing phase

stops.

A baseband block is defined as the baseband signal exchanged between a radio application and

one Rx channel or one Tx channel during a processing phase.

The sample number of a baseband sample is defined as its position within a baseband block,

starting at 1 for the first sample.

1.2.4 Transmission

A transmission is defined as the processing phase of Tx channels.

The following figure illustrates the principle of a transmission:

Tx processed block Last processed

sample1

Tx burst

Start time

CoreRamp-up Ramp-down

Up-conversion

latency

N

Transmission

Tx channels up-convert

First sample

0 0 0 0 0 0 0 0

Padding samples

Activation

time

Termination

time

Baseband signal

sBB [n]

Radio signal

sRF(t)

Up-conversion

latencyStop time

Figure 2 Principle of transmission processing phase

1.2.4.1 Boundary signals

A transmit forwarded block (Tx forwarded block) is defined as a the baseband block sent by a

radio application to one Tx channel during a transmission.

A transmit packet (Tx packet) is defined as a one elementary set of baseband samples successively

sent by a radio application to one Tx channel for transfer of a Tx forwarded block.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 6
All Rights Reserved.

A transmit processed block (Tx processed block) is defined as a the part of the Tx forwarded block

up-converted by one Tx channel during a transmission.

Correct operation of Tx channels requires that the level of baseband signal is within a particular

range.

The upper bound of this range generally corresponds to the maximum level maintaining Tx

channels linearity. The lower bound of this range generally corresponds to the level required for the

baseband signal to be able to drive the Tx channels processing.

A transmit burst (Tx burst) is defined as the radio signal sent by one Tx channel to the antenna

during a transmission.

The core of a Tx burst is defined as the part of the Tx burst without its ramp-up and ramp-down.

1.2.4.2 Start time

The start time of a Tx burst is defined as the start time of its core.

The start time of a Tx burst generally happens up-conversion latency after activation time.

The stop time of a Rx burst is defined as the stop time of its core.

The start time of a Tx burst generally happens up-conversion latency before termination time.

1.2.4.3 Transmit transfer function

An ideal up-conversion generates a radio signal which spectrum is the zero-centered spectrum of

the baseband signal translated around the carrier frequency, with application of an ideal low-pass

filter of bandwidth B to select the spectrum portion of interest.

An ideal up-conversion obeys to the following equation:

 �̇�𝑅𝐹(𝑓 + 𝑓𝑐) = 𝛼. rect(𝑓/𝐵). �̇�𝐵𝐵(𝑓), 𝑓 ∈ [− 𝐹𝑠
𝐵𝐵 2⁄ ; +𝐹𝑠

𝐵𝐵/2] Eq. 1,

where:

▪ rect() is the rectangular function,

▪ 𝛼 is a real coefficient reflecting the up-conversion gain.

The transmit transfer function (𝐻𝑇𝑥) is defined as the transfer function nearing the ideal low-pass

filter of the ideal up-conversion that is implemented by a Tx channel.

CHANNEL_MASK (see section 4.10) specify the frequency domain mask into which 𝐻𝑇𝑥 fits.

The actual up-conversion performed by a Tx channel obeys to the up-conversion formula:

 �̇�𝑅𝐹(𝑓 + 𝑓𝑐) = 𝐻𝑇𝑥(𝑓). �̇�𝐵𝐵(𝑓), 𝑓 ∈ [− 𝐹𝑠
𝐵𝐵 2⁄ ; +𝐹𝑠

𝐵𝐵/2] Eq. 2.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 7
All Rights Reserved.

The transmit impulse response (ℎ𝑇𝑥) is defined as the non-causal equivalent impulse response

corresponding to up-conversion, symmetrical around the y-axis, with up-conversion latency equal

to the half of its domain:

− 𝐿

 ()

Up-conversion latency (UL)

| ()|

0

+ 𝐿

Figure 3 Transmit impulse response

One has:

𝑠𝑅𝐹() = ∑ [(ℜ(𝑠𝐵𝐵[𝑘]). co (2𝜋𝑓𝑐) − ℑ(𝑠𝐵𝐵[𝑘]). in(2𝜋𝑓𝑐)). ℎ𝑇𝑥(− 𝑠 − 𝑘/𝐹𝑠

𝐵𝐵)]𝐿−1
𝑘=0 ,

 ∈ [𝑠; 𝑠 + 𝐿/𝐹𝑠
𝐵𝐵]

 Eq. 3,

where:

▪ L denotes the transmit block length,

▪ ℜ() and ℑ() denote the real and imaginary part of a complex number,

▪ 𝑠 denotes the start time.

Further technical information is available in technical literature, e.g. [Ref2] and [Ref3].

1.2.4.4 Transmit gain

The transmit gain (𝐺𝑇𝑥) of a transmission is specified as 𝐺𝑇𝑥 = 𝐿𝑅𝐹 − 𝐿𝐵𝐵.

1.2.4.5 Tx shaping

Nominal shaping is defined as the case where the ramp-up and ramp-down parts of the Tx burst are

the ramp-up and ramp-down of up-conversion.

Ad-hoc shaping is defined as the case where the ramp-up or ramp-down parts of the Tx burst

modifies the ramp-up and ramp-down of up-conversion.

Ad-hoc shaping is unspecified, and has to be specified according to the radio application needs.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 8
All Rights Reserved.

TX_SHAPING (see section 4.2) specifies if the shaping is nominal or specific:

Burst core

Nominal shaping: ramp-up

and ramp-down of up-

conversion are used.
Ramp-up

Ramp-

down

Start time

Ramp-up Ramp-downBurst core

Start time

Ad-hoc shaping: ramp-up or

ramp-down of up-conversion

are modified.

output of up-

conversion

Figure 4 Nominal and specific Tx bursts shapings

1.2.5 Reception

A reception is defined as the processing phase of Rx channels.

The following figure illustrates the principle of a reception:

Baseband signal

sBB [n]
1

Rx burst

Radio signal

sRF(t)

Down-conversion

latency

N

Reception

Rx channels down-convert

First sample

Start time

ignored

X X XX X X XX

Last processed

sample

Rx block Down-conversion

latency

CoreRamp-up Ramp-down

Termination

time

Activation

time

Stop time

Figure 5 Principle of reception processing phase

1.2.5.1 Boundary signals

A receive burst (Rx burst) is defined as the radio signal sent by the antenna to one Rx channel

during a reception.

Correct operation of Rx channels requires that the level of radio signal is within a particular range.

The upper bound of this range generally corresponds to the protection of Rx channels against high

level signals. The lower bound of this range generally corresponds to the expected sensitivity.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 9
All Rights Reserved.

A receive block (Rx block) is defined as the baseband block sent by one Rx channel to a radio

application during a reception.

A receive packet (Rx packet) is defined as a one elementary set of baseband samples successively

sent by one Rx channel to a radio application for transfer of an Rx block.

Correct operation of a receiving radio application requires that the level of baseband signal is

within a particular range.

The upper bound of this range generally corresponds to the level maximum level allowed to avoid

saturation of the radio application processing. The lower bound of this range generally corresponds

to the level under which the quantization noise impacts the reception performance.

1.2.5.2 Start time

The start time of an Rx burst is defined as the time when the Rx burst starts.

The start time of an Rx burst is equal to its activation time.

The stop time of an Rx burst is defined as the time when the Rx burst stops.

The stop time of an Rx burst generally happens two times down-conversion latency before

termination time, in order for the down-conversion processing chain to be fully flushed.

1.2.5.3 Receive transfer function

An ideal down-conversion generates a baseband signal which zero-centered spectrum is obtained

from a perfect transposition of the radio signal spectrum considered around the carrier frequency,

with application of an ideal low-pass filter of bandwidth B to select the spectrum portion of interest.

An ideal down-conversion obeys to the following equation:

 �̇�𝐵𝐵(𝑓) = 𝛼. rect(𝑓/𝐵). �̇�𝑅𝐹(𝑓 − 𝑓𝑐), 𝑓 ∈ [− 𝐹𝑠
𝐵𝐵 2⁄ ; +𝐹𝑠

𝐵𝐵/2] Eq. 4,

where:

▪ rect() is the rectangular function,

▪ 𝛼 is a real coefficient reflecting the down-conversion gain.

The receive transfer function (𝐻𝑅𝑥) is defined as the transfer function nearing the ideal low-pass

filter of the ideal down-conversion that is implemented by an Rx channel.

CHANNEL_MASK (see section 4.10) specify the frequency domain mask into which 𝐻𝑅𝑥 fits.

The actual down-conversion performed by an Rx channel obeys to the down-conversion formula:

 �̇�𝐵𝐵(𝑓) = 𝐻𝑅𝑥(𝑓). �̇�𝑅𝐹(𝑓 − 𝑓𝑐), 𝑓 ∈ [−𝐹𝑠
𝐵𝐵 2⁄ ; +𝐹𝑠

𝐵𝐵/2] Eq. 5.

The receive impulse response (ℎ𝑅𝑥) is defined as the non-causal equivalent impulse response

corresponding to down-conversion, symmetrical around the y-axis, with down-conversion latency

equal to the half of its domain:

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 10
All Rights Reserved.

− 𝐿

 ()

Down-conversion latency (DL)

| ()|

0

+ 𝐿

Figure 6 Receive impulse response

One has:

 𝑠𝐵𝐵[𝑘] = ((𝑠𝑅𝐹() + 𝑖. �̂�𝑅𝐹()). −2𝜋𝑖𝑓𝑐𝑡) ∗ ℎ𝑇𝑥(), = 𝑠 + 𝑘 𝐹𝑠
𝐵𝐵⁄ , 𝑘 ∈ [0; 𝐿 − 1] Eq. 6,

where:

▪ �̂�𝑅𝐹() denotes the Hilbert transform of 𝑠𝑅𝐹(),

▪ * denotes the convolution product operator,

▪ 𝑠 denotes the start time,

▪ 𝐿 denotes the receive block length.

Further technical information is available in technical literature, e.g. [Ref2] and [Ref3].

1.2.5.4 Receive gain

The receive gain (𝐺𝑅𝑥) of a reception is specified as 𝐺𝑅𝑥 = 𝐿𝐵𝐵 − 𝐿𝑅𝐹.

1.2.6 Inter-burst characterization

The inter-burst duration is defined as the duration of the period occurring between two consecutive

core bursts.

Next burst

Core

Radio signal

sRF(t)

Core

Previous burst Inter-burst duration

Stop time Start time

Figure 7 Principle of inter-burst duration

INTER-BURST (see section 4.8) specifies the minimum value possibly taken by inter-burst

duration.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 11
All Rights Reserved.

The inter-processing duration is defined as the duration of the period occurring between two

consecutive processing phases, as illustrated in the following figure:

Processing

phase n

Termination

time

Activation

time

Processing

phase n+1
Inter-processing phase

Inter-processing duration

Figure 8 Principle of inter-processing duration

INTER-PROCESSING (see section 4.8) specifies the minimum value possibly taken by inter-

processing duration.

Inter-burst duration and inter-processing duration is at least equal to the tuning duration between

the two bursts.

In addition to tuning duration, inter-burst duration comprises the duration of the bursts ramp-up

and ramp-down, while inter-processing duration does not.

1.2.7 Transceiver time

Transceiver time is defined as the monotonic time implemented by a transceiver instance, used to

exchange time specification of events related to operation of the transceiver.

Transceiver time is essentially used in the case absolute burst creation (see section 2.4.2.3), and

values of transceiver time can be accessed by radio applications using a dedicated service (see

section 2.4.7).

1.3 Transceiver API

The Transceiver API is defined as the service-oriented Application Programming Interface (API)

of the specification.

1.3.1 Services

A service of the Transceiver API is defined as a capability of a transceiver instance that exchanges

messages with a radio application in compliance with one attached software interface and the

specified behavior.

A service interface is defined as the particular Interface Description Language (IDL) software

interface attached to a service.

A service and its service interface have the same name.

A provide service is defined as a service whose service interface is used by a radio application and

provided by a transceiver instance.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 12
All Rights Reserved.

A use service is defined as a service whose service interface is used by a transceiver instance and

provided by a radio application.

1.3.2 Services groups

A services group of the Transceiver API is defined as a set of provide services and use services

sharing a common purpose.

The module of a service group is defined as the IDL module of the interfaces of the services of the

services group.

A services group and its module have the same name.

The following services groups are specified:

▪ Management: general control,

▪ BurstControl: creation and termination of bursts,

▪ BasebandSignal: packet-based exchange of baseband blocks,

▪ Tuning: control of the tuning parameters,

▪ Notifications: notification of events and errors to the radio application,

▪ GainControl: automated gain control,

▪ TransceiverTime: access to transceiver time,

▪ Strobing: trigger of strobes for creation of strobed bursts.

1.3.3 Implementation of services

An active instance of a service is defined as a running implementation of the service that is

connected to the radio application in conformance with the service interface.

1.3.3.1 Access capabilities

The transceiver instances access capability is defined as the capability for the radio application

software to access, before the CONFIGURED state is reached, to the transceiver instances it uses.

The active services access capability is defined as the capability for the radio application software

to access, before the CONFIGURED state is reached, to the active services instances of the

transceiver instances it uses.

The solution for transceiver instance access and active services access has to be specified by the

applied PSM specification.

1.3.3.2 Tx channels services

SamplesTransmission (see section 2.4.2.5) is the service enabling Tx forwarded block

exchange.

A transceiver instance shall have one active instance of SamplesTransmission per Tx channel.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 13
All Rights Reserved.

This implies TX_CHANNELS instances of the service are implemented.

TX_SERVICES (see section 4.2) specifies, if TX_CHANNELS > 0, the set of services attached to Tx

channels.

A transceiver instance shall have, for each service attached to Tx channels, one active instance of

the service that jointly applies to all Tx channels.

1.3.3.3 Rx channels services

SamplesReception (see section 2.4.2.5) is the service enabling Rx block exchange.

A transceiver instance shall have one active instance of SamplesReception per Rx channel.

This implies RX_CHANNELS instances of the service are implemented.

RX_SERVICES (see section 4.2) specifies, if RX_CHANNELS > 0, the set of services attached to Rx

channels.

A transceiver instance shall have, for each service attached to Rx channels, one active instance of

the service that jointly applies to all Rx channels.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 14
All Rights Reserved.

2 Services

2.1 Provide services

The following table lists the provide services of the API (used by a radio application and provided

by a transceiver instance, see section 1.3.1):

Services groups /

Modules

Services / Interfaces Primitives

Management ::Management::Reset reset()

::Management::RadioSilence startRadioSilence()

stopRadioSilence()

BurstControl ::BurstControl::DirectCreation startBurst()

::BurstControl::RelativeCreation scheduleRelativeBurst()

::BurstControl::AbsoluteCreation scheduleAbsoluteBurst()

::BurstControl::StrobedCreation scheduleStrobedBurst()

::BurstControl::Termination setBlockLength()

stopBurst()

BasebandSignal ::BasebandSignal::SamplesTransmission pushTxPacket()

::BasebandSignal::RxPacketsLengthControl setRxPacketsLength()

Tuning ::Tuning::InitialTuning setTuning()

::Tuning::Retuning retune()

GainControl ::GainControl::GainLocking lockGain()

unlockGain()

TransceiverTime ::TransceiverTime::TimeAccess getCurrentTime()

getLastStartTime()

Strobing ::Strobing::ApplicationStrobe triggerStrobe()

Table 1 Provide services of Transceiver API

2.2 Use services

The following table lists the use services of the API (provided by a radio application and used by a

transceiver instance, see section 1.3.1):

Services groups Service / Interface Primitives

BasebandSignal ::BasebandSignal::SamplesReception pushRxPacket()

Notifications ::Notifications::Events notifyEvent()

::Notifications::Errors notifyError()

GainControl ::GainControl::GainChanges indicateGain()

Table 2 Use services of Transceiver API

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 15
All Rights Reserved.

2.3 States machines

The state machines specified in this section and their associated statecharts aim to comply with the

OMG Unified Modeling Language v2.5, as specified in [Ref4].

All specified transitions are instantaneous.

Errors and exceptions handling are not modeled by the specified state machines.

2.3.1 Channels

Channels is specified as the main state machine followed by channels of a transceiver instance.

An instance of Channels is simultaneously followed by all Tx channels of a transceiver instance.

An instance of Channels is simultaneously followed by all Rx channels of a transceiver instance.

The instances of Channels in a half-duplex transceiver are not independent: if channels are in

TUNING or PROCESSING state, the other channels cannot be in one of those two states.

The following figure is the statechart of Channels state machine:

CONFIGURED

OPERATING

IDLE

PROCESSING

TUNING

ProcessingStart

(@ activation time)

TuningStart

(@ tuning time)
TuningStop

ProcessingStop

curentSample = BlockLength
stopBurst()
(@ termination time)

RuntimeReset

reset()

ResetCompleted

RESETTING

Figure 9 Channels statechart

2.3.1.1 States

2.3.1.1.1 CONFIGURED

CONFIGURED is specified as the main state of Channels during which channels of a transceiver

instance are configured according to the needs of a supported radio application.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 16
All Rights Reserved.

CONFIGURED is reached by the channels of a transceiver instance when they:

▪ Comply with the values of properties specified for the supported radio application (see

section 4),

▪ Have attributes set to their initial values (see section 3.3),

▪ Can interact with the radio application according to interfaces of active services.

CONFIGURED decomposes into OPERATING and RESETTING sub-states.

Its entry transition brings to the OPERATING sub-state.

How CONFIGURED is reached has to be specified by the applied PSM specification.

2.3.1.1.2 OPERATING

OPERATING is specified as the sub-state of CONFIGURED during which channels are operational.

OPERATING decomposes into IDLE, TUNING and PROCESSING sub-states.

Its entry transition brings to the IDLE sub-state.

2.3.1.1.3 IDLE

IDLE is specified as the sub-state of OPERATING during which channels are inactive.

2.3.1.1.4 TUNING

TUNING is specified as the sub-state of OPERATING during which channels are tuned in accordance

with the applicable tuning parameters set, as defined by CreationControl (see section 2.3.2).

Note: the concept of tuning of the specification is larger than only changing value of carrier

frequency. It can imply modification of tuning preset and gain.

A channel shall, during the TUNING state, set the value of applicableTuningPreset attribute

according to value of requestedTuningPreset:

▪ If equal to UndefinedTuningPreset: keep the value of

applicableTuningPreset used for the previous burst,

▪ If not equal to UndefinedTuningPreset: apply requestedTuningPreset as the new

value of applicableTuningPreset.

A channel shall, during TUNING state, set the value of applicableCarrierFreq attribute

depending on value of requestedCarrierFreq:

▪ If equal to UndefinedCarrierFreq: keep the value of applicableCarrierFreq at

termination of the previous burst,

▪ If not equal to UndefinedCarrierFreq: apply requestedCarrierFreq as the new

value of applicableCarrierFreq.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 17
All Rights Reserved.

A Tx channel shall, during TUNING state, set the value of applicableGain attribute depending

on value of requestedGain:

▪ If equal to UndefinedGain: keep the value of applicableGain at termination of the

previous burst,

▪ If not equal to UndefinedGain: apply requestedGain as the new value of

applicableGain.

Usage of requestedGain by an Rx channel is unspecified.

TUNING_DURATION (see section 4.8) specifies the maximum duration of TUNING state (see section

2.3.4).

2.3.1.1.5 PROCESSING

PROCESSING is specified as the sub-state of OPERATING during which channels are in a

processing phase (transmission for Tx channels, reception for Rx channels) (see section 1.2.3, 1.2.4

and 1.2.5).

Tx channels requirements

Tx channels shall, during PROCESSING state, initiate up-conversion:

▪ With first sample of Tx processed block equal to first sample of Tx forwarded block,

▪ With a ramp-up signal generated in accordance with TX_SHAPING (see section 4.2).

Tx channels shall, during a PROCESSING state, increment value of sampleCount (see section

3.3.1.2) each time a new baseband sample of the Tx forwarded block enters in up-conversion.

The valid input level range of Tx channels is defined as the interval

[TX_MIN_BASEBAND_LEVEL ; TX_MAX_BASEBAND_LEVEL] (see section 4.10).

Tx channels shall, during a PROCESSING state and so long as the baseband signal is within the

valid input level range, perform up-conversion in conformance with the up-conversion formula (see

section 1.2.4).

Tx channels shall exhibit, during PROCESSING state and so long as the baseband signal level is

within the valid input level range, an actual gain that belongs to applicableGain ± GAIN_ACC

(see section 4.10).

Automatic level control (ALC)

Automatic level control (ALC) is defined as the capability for a Tx channel to automatically adjust

the actually applied transmit gain, during early phase of the transmission, in order to radiate a

desired level of radio signal.

ALC (see section 4.3) specifies the nature of the applied ALC.

Tx channels shall, during PROCESSING state and if ALC is equal to noALC, implement no ALC.

Tx channels shall, during PROCESSING state and if ALC is equal to activeALC, implement ALC.

Further aspects of the implemented ALC are unspecified.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 18
All Rights Reserved.

Adjustment in transmit gain realized by an active ALC can be indicated to the radio application

using the GainControl service (see section 2.4.6).

Rx channels requirements

Rx channels shall, during PROCESSING state, initiate down-conversion:

▪ Without transferring ramp-up samples to the radio application,

▪ With first sample of the Rx block equal to the sample following the ramp-up samples.

The valid input level range of Rx channels is defined as the interval [RX_MIN_RADIO_LEVEL ;

RX_MAX_RADIO_LEVEL] (see section 4.10).

Rx channels shall, during a PROCESSING state and so long the radio signal is within the valid input

level range, perform down-conversion in conformance with the down-conversion formula (see

section 1.2.5).

Rx channels shall, during a PROCESSING state, increment value of sampleCount (see section

3.3.1.2) each time a new baseband sample generated by down-conversion is assigned to an Rx

packet.

The valid output level range of Rx channels is defined as the interval

[RX_MIN_BASEBAND_LEVEL ; RX_MAX_BASEBAND_LEVEL] (see section 4.10).

Rx channels shall, during PROCESSING state and so long the radio signal is within the valid input

level range, deliver an output baseband signal which level is within the valid output level range.

Automatic gain control (AGC)

Automatic gain control (AGC) is defined as the capability for a Rx channel to automatically change

the receive gain in order to deliver a baseband signal which meets the specified level requirements.

AGC (see section 4.3) specifies the nature of the applied AGC.

Rx channels shall, during PROCESSING state and if AGC is equal to noAGC, implement no AGC.

Rx channels shall, during PROCESSING state and if AGC is equal to earlyControl, implement an

AGC that sets the receive gain at beginning of the Rx burst, to a value that is then kept constant for

the remainder of the burst.

EARLY_AGC_DELAY (see section 4.8) specifies the delay available after start time of a Rx burst for

an earlyControl AGC to have set the receive gain.

Rx channels shall, during PROCESSING state and if AGC is equal to permanentControl,

implement an AGC that remains active during the full Rx burst.

Further aspects of the implemented AGC are unspecified.

For Rx channels implementing AGC, changes in receive gain can be indicated to the radio

application using the GainChanges service (see section 2.4.6).

For Rx channels implementing a permanent AGC, the AGC can be deactivated and reactivated using

the AGCActivation service (see section 2.4.6).

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 19
All Rights Reserved.

Channelization requirements

Channels shall exhibit, during PROCESSING state and so long as input signal level is within the

valid input level range, an actual transfer function that fits into the mask defined by fields of

CHANNEL_MASK (see section 4.10).

Channels shall exhibit, during PROCESSING state and so long as the input signal level is within the

valid input level range, an actual baseband sampling frequency (𝐹𝑠
𝐵𝐵) that belongs to

CHANNEL_MASK.basebandSamplingFreq ± SAMPLING_FREQ_ACC (see section 4.10).

Channels shall exhibit, during PROCESSING state and so long as the input signal level is within the

valid input level range, an actual carrier frequency that belongs to applicableCarrierFreq ±

CARRIER_FREQ_ACC (see section 4.10).

Termination requirements

The last processed sample of a burst is defined as the sample of the processed block with a sample

number equal to applicableBurstLength.

Note: value of applicableBurstLength can be set by a creation operation (see section 2.4.2) or

updated by setBlockLength() or stopBurst() (see section 3.1.7).

Tx channels shall, during PROCESSING state:

▪ Make the sample of Tx forwarded block with sample number equal to

applicableBurstLength the last sample of the Tx processed block,

▪ Discard any sample of the Tx forwarded block after the last sample,

▪ Use null flushing baseband samples until ramp-down is completed.

Channels shall trigger a ProcessingStop transition once ramp-down is completed and, for Tx

channels, once the Tx forwarded block has been ended by the radio application.

Rx channels shall, during PROCESSING state, terminate down-conversion without transferring

ramp-down samples to the radio application.

2.3.1.1.6 RESETTING

RESETTING is specified as the sub-state of CONFIGURED during which channels reset.

RESETTING is completed by channels of a transceiver instance once:

▪ Attributes are set back to their initial values (see section 3.3),

▪ Any previously used storage is cleared: for creation operation (see sections 3.1.3, 3.1.4,

3.1.5 and 3.1.6), tuning parameters set (see section 3.1.11) or baseband samples of Tx

channels (see section 3.1.9).

2.3.1.2 Transitions

2.3.1.2.1 ResetCompleted

ResetCompleted is specified as the transition from RESETTING to IDLE.

It is triggered once channels have completed the RESETTING state.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 20
All Rights Reserved.

2.3.1.2.2 TuningStart

TuningStart is specified as the transition from IDLE state to TUNING.

It is triggered under control of CreationControl (see section 2.3.2).

2.3.1.2.3 TuningStop

TuningStop is specified as the transition from TUNING to IDLE.

It is triggered once channels have completed the TUNING state.

2.3.1.2.4 ProcessingStart

ProcessingStart is specified as the transition from IDLE to PROCESSING.

It is triggered under control of CreationControl (see section 2.3.2).

2.3.1.2.5 ProcessingStop

ProcessingStop is specified as the transition from PROCESSING to IDLE.

It is triggered by PROCESSING based on knowledge of last processed sample (see section

2.3.1.1.5).

2.3.1.2.6 RuntimeReset

RuntimeReset is specified as the transition from OPERATING to RESETTING.

It is triggered upon call of reset() (see section 3.1.1) by the radio application.

2.3.2 CreationControl

CreationControl is specified as the autonomous process followed by a transceiver instance for

the control of creation of the bursts executed by channels.

An instance of CreationControl applies to all Tx channels of a transceiver instance.

An instance of CreationControl applies to all Rx channels of a transceiver instance.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 21
All Rights Reserved.

The following figure is the statechart of CreationControl state machine:

CREATION

SCHEDULING

INITIATING

creationStart

ACTUATING

AWAITING

initiationCompleted

creationCompleted

schedulingCompleted

Figure 10 CreationControl statechart

2.3.2.1 States

2.3.2.1.1 AWAITING

AWAITING is specified as the state of CreationControl during which a transceiver instance

stays until it triggers a burst creation.

A transceiver instance shall, during AWAITING, wait until a creation command is available in

storage.

2.3.2.1.2 CREATING

CREATING is specified as the state of CreationControl during which a transceiver instance

performs creation of a particular burst.

The burst under creation is defined as the burst that an instance of CREATING aims to create.

The applied creation command is defined as the creation command applied by CREATING for

creation of the burst under creation.

The entry transition of CREATING is specified as a transition to the INITIATING sub-state.

The exit transition of CREATING is specified as a transition after completion of the ACTUATION

sub-state.

2.3.2.1.3 INITIATING

INITIATING is specified as the sub-state of CREATING during which burst creation is initiated.

A transceiver instance shall, during INITIATING, make the oldest creation command available in

storage the applied creation command, and remove it from storage.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 22
All Rights Reserved.

A transceiver instance shall, during INITIATING, set value of applicableBurstLength to

value of requestedLength as specified in the applied creation command.

A transceiver instance shall, during INITIATING, increment burstCount (see section 3.3.1.1) by

1 (one), rolling-over to 1 after 4.294.967.295 (2E32-1).

A transceiver instance shall, for Rx channels during INITIATING, set the length of Rx packets to

the value of applicableRxPacketsLength (see section 3.3.1.2).

A transceiver instance shall, during INITIATING, search for stored tuning parameters set

according to a condition specified by value of TUNING_ASSOCIATION (see section 4.3):

▪ For sequential: search for the oldest stored tuning parameters set,

▪ For burstReferencing: search for a stored tuning parameters set with value of

requestedBurstNumber equal to value of burstCount.

A transceiver instance shall, during INITIATING, if a stored tuning parameters set was found, use

it as the applicable tuning parameters set and remove it from storage.

A transceiver instance shall, during INITIATING, if no stored tuning parameters set was found,

set the applicable tuning parameters set as follows:

▪ requestedTuningPreset equals to UndefinedTuningPreset,

▪ requestedCarrierFreq equals to UndefinedCarrierFreq,

▪ requestedDelay equals to UndefinedDelay.

2.3.2.1.4 SCHEDULING

SCHEDULING is specified as the sub-state of CREATING during which the start time, activation

time and tuning time of a burst under creation are determined.

Start time corresponds to start of the core burst at radio signal level (see section 1.2.3).

A channel shall stay in SCHEDULING until all information required for determination of start time

is known.

A channel shall, during SCHEDULING of a startBurst() creation command, make start time equal to

the termination time of the previous burst plus INTER-PROCESSING (see section 3.1.4).

A channel shall, during SCHEDULING of a scheduleRelativeBurst() creation command, make start

time equal to the start time of the previous burst on channels specified by value of

requestedAlternate plus the value of requestedDelay (see section 3.1.4).

A channel shall, during SCHEDULING of a scheduleAbsoluteBurst() creation command, make start

time equal to the value of requestedStartTime (see section 3.1.5).

A channel shall, during SCHEDULING of a scheduleStrobedBurst() creation command, make start

time equal to the occurrence time of the next strobe triggered on the strobe source specified by

requestedStrobeSource plus the value of requestedDelay (see section 3.1.6).

Activation time is defined as the time at which the startProcessing transition is triggered.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 23
All Rights Reserved.

A channel shall, during SCHEDULING, determine activation time so that the effective start time

belongs to start time ± START_TIME_ACC (see section 4.12).

Note: for Tx channels, activation time is equal to start time minus up-conversion latency (see

Figure 2); for Rx channels, activation time is equal to start time (see Figure 5).

Tuning time is defined as the time at which the startTuning transition is triggered to ensure that

the applicable tuning parameters set is implemented by the TUNING state with a TuningStop

transition triggered before activation time.

A channel shall, during SCHEDULING, determine tuning time based on activation time.

2.3.2.1.5 ACTUATING

ACTUATING is specified as the sub-state of CREATING during which the transceiver instance

triggers TuningStart and ProcessingStart transitions of the Channels state machine.

A transceiver instance shall, during ACTUATING, trigger a TuningStart transition at tuning time.

A transceiver instance shall, during ACTUATING of Tx channels if the applied creation operation is

startBurst(), shift activation time until first baseband sample becomes available.

A transceiver instance shall, during ACTUATING, trigger a ProcessingStart transition at

activation time.

2.3.2.2 Transitions

2.3.2.2.1 CreationStart

CreationStart is specified as the transition from AWAITING to CREATION.

It is triggered once a creation command is available in storage.

2.3.2.2.2 InitiationCompleted

CreationStart is specified as the transition from INITIATING to SCHEDULING.

It is triggered once a transceiver instance has completed INITIATING.

2.3.2.2.3 SchedulingCompleted

SchedulingCompleted is specified as the transition from SCHEDULING to ACTUATING.

It is triggered once a transceiver instance has completed SCHEDULING.

2.3.2.2.4 CreationCompleted

CreationCompleted is specified as the transition from CREATION to AWAITING.

It is triggered once a transceiver instance has completed ACTUATING.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 24
All Rights Reserved.

2.3.3 RadioSilence

RadioSilence is specified as the state machine applicable if RadioSilence is active or if the

channels can be turned to radio silence by an agent different from the radio application.

The following figure is the statechart of RadioSilence:

OPERATING

RADIO_SILENCE

NORMAL

RadioSilenceStop

(stopRadioSIlence())
RadioSilenceStart

(startRadioSIlence())

IDLE

PROCESSING

TUNING

Figure 11 RadioSilence statechart

RadioSilence is a sub-state machine of OPERATING, parallel to the sub-state machine of

OPERATING specified by Channels (see section 2.3.1).

2.3.3.1 States

2.3.3.1.1 NORMAL

NORMAL is specified as the state during which the channels operate as specified for the OPERATING

state of Channels.

The entry transition of RadioSilence brings to NORMAL.

2.3.3.1.2 RADIO_SILENCE

RADIO_SILENCE is specified as the state during which channels minimize the radiated radio

signal, preventing respect of the specified tuning during PROCESSING state.

The RADIO_SILENCE state does not impact any other aspect of the OPERATING state.

2.3.3.2 Transitions

2.3.3.2.1 RadioSilenceStart

RadioSilenceStart is specified as the transition from NORMAL to RADIO_SILENCE.

It is triggered by invocation of startRadioSilence().

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 25
All Rights Reserved.

2.3.3.2.2 RadioSilenceStop

RadioSilenceStop is specified as the transition from RADIO_SILENCE to NORMAL.

It is triggered by invocation of stopRadioSilence().

2.3.4 Retuning

Retuning is specified as the state machine applicable if Retuning is active.

The following figure is the statechart of Retuning:

PROCESSING

RETUNING

TUNED

RetuningStopRetuningStart

(execution of retune())

Figure 12 Retuning statechart

Retuning is a sub-state machine of PROCESSING (see section 2.3.1).

2.3.4.1 States

2.3.4.1.1 TUNED

TUNED is specified as the sub-state of PROCESSING during which channels process with stable

tuning characteristics that comply with the specified tuning.

The entry transition of Retuning brings to TUNED.

2.3.4.1.2 RETUNING

RETUNING is specified as the sub-state of PROCESSING during which channels change their tuning

while continuing to perform up-conversion or down-conversion.

RETUNING_DURATION (see section 4.8) specifies the maximum duration of RETUNING state.

2.3.4.2 Transitions

2.3.4.2.1 RetuningStart

RetuningStart is specified as the transition from TUNED to RETUNING.

It is triggered when the radio application calls retune() (see section 3.1.12).

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 26
All Rights Reserved.

2.3.4.2.2 RetuningStop

RetuningStop is specified as the transition from RETUNING to TUNED.

It is triggered when the new tuning characteristics are stable and conform to the tuning changes

commanded by retune().

2.4 Services groups description

The class diagrams appearing in this section aim to comply with the OMG Unified Modeling

Language v2.5, as specified in [Ref4].

2.4.1 Transceiver::Management

The Management services group enables radio applications to manage the Transceiver, and

contains the following services:

Radio
application

Transceiver::Management

Reset

RadioSilence

Transceiver
provides

provides

Figure 13 Services of Management services group

The Reset service enables radio applications to reset channels.

The RadioSilence service enables radio applications to start and stop radio silence.

2.4.1.1 Transceiver::Management::Reset Interface Description

The Reset interface is composed of the reset() operation, as depicted in the following figure:

<< interface >>

Reset

• reset()

Figure 14 Management::Reset interface

reset() enables radio applications to reset channels.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 27
All Rights Reserved.

2.4.1.2 Transceiver::Management::RadioSilence Interface Description

The RadioSilence interface is composed of the startRadioSilence() and stopRadioSilence()

operations, as depicted in the following figure:

<< interface >>

RadioSilence

• startRadioSilence()

• stopRadioSilence()

Figure 15 Management::RadioSilence interface

startRadioSilence() enables radio applications to start radio silence.

stopRadioSilence() enables radio applications to stop radio silence.

2.4.2 Transceiver::BurstControl

The BurstControl services group enables radio applications to control the creation of bursts, and

contains the following services:

Transceiver::BurstControl

DirectCreation

RelativeCreation

AbsoluteCreation

StrobedCreation

TransceiverRadio
application

provides

provides

provides

provides

TerminationControl

Figure 16 Services of BurstControl services group

A creation service is defined as a service of BurstControl services group.

A creation operation is defined as one operation of a creation service: startBurst(),

scheduleRelativeBurst(), scheduleAbsoluteBurst() or scheduleStrobedBurst().

The DirectCreation service enables radio applications to schedule the creation of a new burst

with no specific requirement on its start time.

A timely creation service is defined as a RelativeCreation, AbsoluteCreation or

StrobedCreation service.

A timely creation operation is defined as a creation operation of a timely creation service:

scheduleRelativeBurst(), scheduleAbsoluteBurst() or scheduleStrobedBurst().

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 28
All Rights Reserved.

Timely creation services and operations enables to specify the start time of scheduled burst,

measured at the radio signal level, as specified in section 1.2.

The RelativeCreation service enables radio applications to schedule the creation of a new

burst with a start time delayed by a specified value from the start time of the previous burst.

The AbsoluteCreation service enables radio applications to schedule the creation of a new

burst with a start time specified using the transceiver time.

The StrobedCreation service enables radio applications to schedule the creation of a new burst

with a start time delayed by a specified value from the next occurrence of a strobe discrete signal

on a specified strobe source.

All creation services enable radio applications to specify the length of the baseband block.

Radio applications must make calls to creation operations in the same order as the order of created

bursts (see section 2.3.2), and can make up to CREATION_STORAGE (see section 4.8) anticipated

calls to creation operations.

Radio applications must make calls to timely creation operations ensuring value of INTER-

PROCESSING (see section 4.8) is respected.

The Termination service enables radio applications to control termination of an ongoing

processing phase.

2.4.2.1 Transceiver::BurstControl::DirectCreation Interface Description

The DirectCreation interface is composed of the startBurst() operation, as depicted in the

following figure:

<< interface >>

DirectCreation

• startBurst()

<< typedef>>

BlockLength

Figure 17 BurstControl::DirectCreation interface

startBurst() enables radio applications to schedule the creation of a new burst with no specific

requirement on its start time.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 29
All Rights Reserved.

2.4.2.2 Transceiver::BurstControl::RelativeCreation Interface Description

The RelativeCreation interface is composed of the scheduleRelativeBurst() operation, as

depicted in the following figure:

<< interface >>

RelativeCreation

• scheduleRelativeBurst()

<< typedef>>

Delay

<< typedef>>

BlockLength

<< typedef>>

CrossReference

Figure 18 BurstControl::RelativeCreation interface

scheduleRelativeBurst() enables radio applications to schedule the creation of a new burst with a

start time delayed by a specified value from the start time of the previous burst.

scheduleRelativeBurst() must be combined with another creation operation (e.g. startBurst() or

scheduleStrobedBurst()), used to create the first burst of all series of bursts then created using

scheduleRelativeBurst().

2.4.2.3 Transceiver::BurstControl::AbsoluteCreation Interface Description

The AbsoluteCreation interface is composed of the scheduleAbsoluteBurst() operation, as

depicted in the following figure:

<< interface >>

AbsoluteCreation

• scheduleAbsoluteBurst()

<< typedef >>

TimeSpec

<< typedef>>

BlockLength

Figure 19 BurstControl::AbsoluteCreation interface

scheduleAbsoluteBurst() enables radio applications to schedule the creation of a new burst with a

start time specified using the transceiver time.

scheduleAbsoluteBurst() must be used in conjunction with a mechanism enabling radio

applications to get the transceiver time (e.g. the TransceiverTime service).

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 30
All Rights Reserved.

2.4.2.4 Transceiver::BurstControl::StrobedCreation Interface Description

The StrobedCreation interface is composed of the scheduleStrobedBurst() operation, as

depicted in the following figure:

<< interface >>

StrobedCreation

• scheduleStrobedBurst()

<< typedef >>

Delay

<< typedef >>

StrobeSource

<< typedef>>

BlockLength

Figure 20 BurstControl::StrobedCreation interface

scheduleStrobedBurst() enables radio applications to schedule the creation of a new burst with a

start time delayed by a specified value from the next occurrence of a strobe discrete signal on a

specified strobe source.

The specified strobe source can be internal to the platform (e.g. the PPS signal of a GNSS system)

or be provided by a component of the radio application (e.g. a FPGA component).

2.4.2.5 Transceiver::BurstControl::Termination Interface Description

The Termination interface is composed of the setBlockLength() and stopBurst() operations, as

depicted in the following figure:

<< interface >>

Termination

• setBlockLength()

• stopBurst()

<< typedef >>

BlockLength

Figure 21 BurstControl::Termination interface

setBlockLength() enables radio applications to set the length of the baseband block processed by

channels during an ongoing processing phase.

stopBurst() enables radio applications command immediate termination of an ongoing processing

phase.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 31
All Rights Reserved.

2.4.3 Transceiver::BasebandSignal

The BasebandSignal services group enables radio applications to exchange blocks of baseband

samples processed by channel, and contains the following services:

TransceiverRadio
application

Transceiver::BasebandSignal

SamplesTransmission

provides

SamplesReception

uses

RxPacketsLengthControl

provides

Figure 22 Services of BasebandSignal services group

The SamplesReception service enables radio applications to obtain a receive baseband block

from an Rx channel during a reception (see section 1.2.4).

The SamplesTransmission service enables radio applications to forward a transmit baseband

block to a Tx channel during a transmission (see section 1.2.5).

The RxPacketsLengthControl service enables radio applications to set the value of the

applicableRxPacketsLength attribute.

2.4.3.1 Transceiver::BasebandSignal::SamplesReception Interface Description

The SamplesReception interface is composed of the pushRxPacket() operation, as depicted in

the following figure:

<< interface >>

SamplesReception

• pushRxPacket()

<< typedef >>

BasebandPacket

Figure 23 BasebandSignal::SamplesReception interface

pushRxPacket() enables radio applications to obtain a baseband packet from an Rx channel and to

be specified if the packet is the last packet of the Rx block.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 32
All Rights Reserved.

2.4.3.2 Transceiver::BasebandSignal::SamplesTransmission Interface Description

The SamplesTransmission interface is composed of the pushTxPacket() operation, as depicted

in the following figure:

<< interface >>

SamplesTransmission

• pushTxPacket()

<< typedef >>

BasebandPacket

Figure 24 BasebandSignal::SamplesTransmission interface

pushTxPacket() enables radio applications to forward a baseband packet to a Tx channel and to

specify if the packet is the last packet of the Tx forwarded block.

2.4.3.3 Transceiver::BasebandSignal::RxPacketsLengthControl Interface Description

The RxPacketsLengthControl interface is composed of the setRxPacketsLength() operation, as

depicted in the following figure:

<< interface >>

RxPacketsLengthControl

• setRxPacketsLength()

<< typedef >>

PacketsLength

Figure 25 BasebandSignal::RxPacketsLengthControl interface

setRxPacketsLength() enables radio applications to set the value of the

applicableRxPacketsLength attribute.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 33
All Rights Reserved.

2.4.4 Transceiver::Tuning

The Tuning services group enables radio applications to control the tuning of bursts, and contains

the following services:

Transceiver::Tuning

InitialTuning

TransceiverRadio
application

Retuning

provides

provides

Figure 26 Services of Tuning services group

The InitialTuning service enables radio applications to specify the tuning preset, carrier

frequency and gain values to be applied at beginning of a future burst.

Radio applications can make up to TUNING_STORAGE (see section 4.8) anticipated calls to

setTuning().

Radio applications must use the InitialTuning service for a given burst, if needed, before the

stored creation operation of the burst is used by CreationControl (see section 2.3.2).

The Retuning service enables radio applications to schedule and specify new values of carrier

frequency and gain without interrupting an ongoing processing phase.

2.4.4.1 Transceiver::Tuning::InitialTuning Interface Description

The InitialTuning interface is composed of the setTuning() operation, as depicted in the

following figure:

<< interface >>

InitialTuning

• setTuning()

<< typedef >>

TuningPreset

<< typedef >>

CarrierFrequency

<< typedef >>

BurstNumber

<< typedef >>

Gain

Figure 27 Tuning::InitialTuning interface

setTuning() enables radio applications to specify the tuning preset, carrier frequency and gain

values to be applied at beginning of a future burst.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 34
All Rights Reserved.

2.4.4.2 Transceiver::Tuning::Retuning Interface Description

The Retuning interface is composed of retune() operation, as depicted in the following figure:

<< interface >>

Retuning

• retune()

<< typedef >>

CarrierFrequency

<< typedef >>

Delay

<< typedef >>

Gain

Figure 28 Tuning::Retuning interface

retune() enables radio applications to schedule and specify new values of carrier frequency and

gain without interrupting an ongoing processing phase.

2.4.5 Transceiver::Notifications

The Notifications services group enables radio applications to be notified by channels of

execution events and execution errors, and contains the following services:

TransceiverRadio
application

Transceiver::Notifications

Events

uses

Errors

uses

Figure 29 Services of Notifications services group

The Events service enables radio applications to be notified of events occurrences.

The Errors service enables radio applications to be notified of errors occurrences.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 35
All Rights Reserved.

2.4.5.1 Transceiver::Notifications::Events Interface Description

The Events interface is composed of the notifyEvent() operation, as depicted in the following

figure:

<< interface >>

Events

• notifyEvent()

<< typedef >>

EventCode

Figure 30 Notifications::Events interface

notifyEvent() enables radio applications to be notified of events occurrences.

2.4.5.2 Transceiver::Notifications::Errors Interface Description

The Errors interface is composed of the notifyError() operation, as depicted in the following

figure:

<< interface >>

Errors

• notifyError()

<< typedef >>

ErrorCode

Figure 31 Notifications::Errors interface

notifyError() enables radio applications to be notified of errors occurrences.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 36
All Rights Reserved.

2.4.6 Transceiver::GainControl

The GainControl services group enables radio applications to be informed of aspects related to

gain control, and contains the following service:

TransceiverRadio
application

Transceiver::GainControl

GainChanges

uses

AGCActivation

provides

Figure 32 Services of GainControl services group

The GainCanges service enables radio applications to be notified of changes in gain values

decided by channels during a processing phase.

The AGCActivation service enables radio applications to deactivate and reactivate permanent

AGC while a reception is ongoing.

2.4.6.1 Transceiver::GainControl::GainChanges Interface Description

The GainChanges interface is composed of the indicateGain() operation, as depicted in the

following figure:

<< interface >>

GainChainges

• indicateGain()

<< typedef >>

SampleNumber

<< typedef >>

Gain

Figure 33 GainControl::GainChanges interface

indicateGain() enables radio applications to be notified of changes in gain values decided by

channels during a processing phase.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 37
All Rights Reserved.

2.4.6.2 Transceiver::GainControl::AGCActivation Interface Description

The AGCActivation interface is composed of the deactivateAGC() and reactivateAGC()

operations, as depicted in the following figure:

<< interface >>

AGCActivation

• deactivateAGC()

• reactivateAGC()

Figure 34 GainControl::AGCActivation interface

deactivateAGC() enables radio applications to deactivate AGC in the course of a reception.

reactivateAGC() enables radio applications to reactivate a previously deactivated AGC.

2.4.7 Transceiver::TransceiverTime

The TransceiverTime services group enables radio applications to get values of transceiver

time, and contains the following service:

TransceiverRadio
application

Transceiver::TransceiverTime

AbsoluteCreation

supports

TimeAccess

provides

Figure 35 Service of TransceiverTime services group

The TimeAccess service enables radio applications to get the current value of transceiver time

and the value of transceiver time for the start time of the last created burst.

2.4.7.1 Transceiver::TransceiverTime::TimeAccess Interface Description

The TimeAccess interface is composed of the getCurrentTime() and getLastStartTime()

operations, as depicted in the following figure:

<< interface >>

TimeAccess

• getCurrentTime()

• getLastStartTime()

<< typedef>>

TimeSpec

<< typedef>>

BurstNumber

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 38
All Rights Reserved.

Figure 36 TransceiverTime::TimeAccess interface

getCurrentTime() enables radio applications to get the current value of transceiver time.

getLastStartTime() enables radio applications to get the value of transceiver time for the start time

of the last created burst.

2.4.8 Transceiver::Strobing

The Strobing services group enables radio applications to trigger strobes that can be used for

creation of bursts scheduled with StrobedCreation service, and contains the following interface:

TransceiverRadio
application

StrobedCreation

Transceiver::Strobing

ApplicationStrobe

provides

supports

Figure 37 Service of Strobing services group

The Strobing service enables radio applications to trigger strobes that can be used for creation of

a bursts scheduled with StrobedCreation service.

2.4.8.1 Transceiver::Strobing::ApplicationStrobe Interface Description

The ApplicationStrobe interface is composed of the triggerStrobe() operation, as depicted in

the following figure:

<< interface >>

ApplicationStrobe

• triggerStrobe()

Figure 38 Strobing::ApplicationStrobe interface

triggerStrobe() enables radio applications to trigger occurrences of strobes that can be used for

creation of a burst scheduled by a scheduleStrobedBurst() call (see section 3.1.6) with

requestedStrobeSource parameter equal to ApplicationStrobe.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 39
All Rights Reserved.

3 Service primitives and attributes

3.1 Service primitives

This section specifies the primitives of the services interfaces of the Transceiver API.

Each declaration of a primitive complies with the Full PIM IDL Profile of WInnF IDL profiles for

PIM of SDR Applications, specified in [Ref5].

The conformance criteria for Application-Specific Interfaces is applied (see [Ref5], section 1.3.2):

“An Application-Specific Interface is conformant with one applicable IDL Profile if each of its

operations exclusively uses capabilities of the applicable IDL Profile.”.

The declaration of each primitive also complies with SCA 4.1 Appendix E-1 [Ref6].

The specified declarations are common normative inputs for the PSMs (see section 1.1) specified in

appendices of the specification.

The sequence diagrams appearing in this section are based on the OMG Unified Modeling

Language v2.5, as specified in [Ref4].

3.1.1 Transceiver::Management::Reset

3.1.1.1 reset Operation

3.1.1.1.1 Overview

reset() commands channels to reset.

3.1.1.1.2 Associated properties

RESET_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.1.1.3 Declaration

The declaration of the operation is specified as:

void reset();

3.1.1.1.4 Parameters

None.

3.1.1.1.5 Returned value

None.

3.1.1.1.6 Originator

Radio application.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 40
All Rights Reserved.

3.1.1.1.7 Exceptions

None.

3.1.1.1.8 Behavior requirements

An active instance of Reset shall, on a call to reset():

▪ Stop any ongoing activity,

▪ Trigger a RuntimeReset transition (see section 2.3.1.2.6),

▪ Complete the RESETTING state (see section 2.3.1.1.6),

▪ Trigger a ResetCompleted transition (see section 2.3.1.2.1),

▪ Return the call to the radio application.

3.1.2 Transceiver::Management::RadioSilence

3.1.2.1 startRadioSilence Operation

3.1.2.1.1 Overview

startRadioSilence() commands Tx channels to start a radio silence phase, as depicted in the

following figure:

TransceiverRadio
application

API RF

startRadioSilence()

Radio
silence

The radio silence starts

Radio silence minimizes RF radiation

For Tx channels, Tx burst is not radiated
For Rx channels, Rx baseband samples
are unspecified

Any other behavior of Transceiver is
unaffected

Figure 39 Principle of startRadioSilence()

3.1.2.1.2 Associated properties

START_SILENCE_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.2.1.3 Declaration

The declaration of the operation is specified as:

void startRadioSilence();

3.1.2.1.4 Parameters

None.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 41
All Rights Reserved.

3.1.2.1.5 Returned value

None.

3.1.2.1.6 Originator

Radio application.

3.1.2.1.7 Exceptions

None.

3.1.2.1.8 Behavior requirements

An active instance of RadioSilence shall, on a call to startRadioSilence():

▪ Trigger a RadioSilenceStart transition (see section 2.3.2),

▪ Stop radiating any signal at RF level,

▪ Return the call to the radio application.

The RADIO_SILENCE state does not impact operation of the OPERATING state further than

preventing RF radiation.

3.1.2.2 stopRadioSilence Operation

3.1.2.2.1 Overview

stopRadioSilence() commands the Tx channels to stop a radio silence phase, as depicted in the

following figure:

TransceiverRadio
application

API RF

stopRadioSilence()

The radio silence stops

Radio
silence

Figure 40 Principle of stopRadioSilence()

3.1.2.2.2 Associated properties

STOP_SILENCE_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.2.2.3 Declaration

The declaration of the operation is specified as:

void stopRadioSilence();

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 42
All Rights Reserved.

3.1.2.2.4 Parameters

None.

3.1.2.2.5 Returned value

None.

3.1.2.2.6 Originator

Radio application.

3.1.2.2.7 Exceptions

None.

3.1.2.2.8 Behavior requirements

An active instance of RadioSilence shall, on a call to stopRadioSilence():

▪ Trigger a RadioSilenceStop transition (see section 2.3.2),

▪ Resume normal radio operation at RF level,

▪ Return the call to the radio application.

3.1.3 Transceiver::BurstControl::DirectCreation

3.1.3.1 startBurst Operation

3.1.3.1.1 Overview

startBurst() commands the channels to schedule creation of a burst with no specified start time, as

depicted in the following figure:

TransceiverRadio
application

startBurst(…)

API RF

[Tx] pushTransmittedPacket(
<first packet>)

The created burst starts
immediately after the previously
scheduled burst has terminated

[Tx]: wait for the first packet to be
available before starting

[Rx] pushReceivedPacket(
<first packet>)

Figure 41 Principle of startBurst()

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 43
All Rights Reserved.

3.1.3.1.2 Associated properties

CREATION_STORAGE (see section 4.8) specifies the maximum number of calls to creation

operations, such as calls to startBurst(), which channels can store in advance.

DIRECT_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.3.1.3 Declaration

The declaration of the operation is specified as:

void startBurst(

 in BlockLength requestedLength);

3.1.3.1.4 Parameters

Name Type Description

requestedLength BlockLength

(see § 3.4.3)
Value of applicableLength.

Number of baseband samples to be processed during the

processing phase associated to the burst:

▪ If equal to UndefinedBlockLength: specifies an

undefined value,

▪ If not equal to UndefinedBlockLength: specifies

the number of baseband samples of the baseband

block to be processed during PROCESSING (see

section 2.3.1).

Table 3 Specification of startBurst() parameters

The parameters validity properties are specified as (see section 4.7):

▪ For requestedLength: MIN_BLOCK_LENGTH and MAX_BLOCK_LENGTH.

3.1.3.1.5 Return value

None.

3.1.3.1.6 Originator

Radio application.

3.1.3.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):

▪ MinBlockLength and MaxBlockLength.

3.1.3.1.8 Behavior requirements

An active instance of DirectCreation shall, on a call to startBurst(), handle the exceptions of

the operation as specified in section 3.2.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 44
All Rights Reserved.

An active instance of DirectCreation shall, on a call to startBurst() that raised no exception:

▪ If CREATION_STORAGE calls (see section 4.8) are stored, wait until storage becomes

available,

▪ Store the call for later usage by CreationControl (see section 2.3.2),

▪ Return the call to the radio application.

3.1.4 Transceiver::BurstControl::RelativeCreation

3.1.4.1 scheduleRelativeBurst Operation

3.1.4.1.1 Overview

scheduleRelativeBurst() commands the channels to schedule creation of a burst starting at a

specified delay after the start time of the previous burst of the referenced channel, as depicted in the

following figure:

TransceiverRadio
application

scheduleRelativeBurst(
requestedAlternate,
requestedDelay, …)

API RF

The created burst starts at:
start time = start time of previous
burst + requestedDelay

[Tx]: first packet needs to be
available on time

re
q

u
es

te
d

D
el

a
y

Start time of previous burst

Referenced
channels

(Tx or Rx)

Previous burst is taken on same
channels or alternate channels, as
specified by requestedAlternate

[Tx] pushTransmittedPacket(
<first packet>)

[Rx] pushReceivedPacket(
<first packet>)

Figure 42 Principle of scheduleRelativeBurst()

3.1.4.1.2 Associated properties

CREATION_STORAGE (see section 4.8) specifies the maximum number of calls to creation

operations that channels can store in advance, including calls to scheduleRelativeBurst().

RELATIVE_MILT (see section 4.13) specifies the minimum invocation lead time for correct real-

time usage of the operation.

RELATIVE_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 45
All Rights Reserved.

3.1.4.1.3 Declaration

The declaration of the operation is specified as:

void scheduleRelativeBurst(

 in boolean requestedAlternate,

 in Delay requestedDelay,

 in BlockLength requestedLength);

3.1.4.1.4 Parameters

Name Type Description

requestedAlternate boolean For duplex transceivers, specifies the reference channels:

▪ If equal to false: called channels are used,

▪ If equal to true: alternate channels are used.

requestedDelay Delay

(see § 3.4.7).
Specifies the delay between the start time of the previous

burst scheduled by reference channel and the start time of

the burst to create.

requestedLength BlockLength

(see § 3.4.3)
Number of baseband samples to be processed during the

processing phase associated to the burst:

▪ If equal to UndefinedBlockLength: specifies an

undefined value,

▪ If not equal to UndefinedBlockLength: specifies

the number of baseband samples of the baseband

block to be processed during PROCESSING (see

section 2.3.1).

Table 4 Specification of scheduleRelativeBurst() parameters

The parameters validity properties are specified as (see section 4.7):

▪ For requestedAlternate: ALTERNATE_REFERENCING,

▪ For requestedDelay: MIN_FROM_PREVIOUS and MAX_FROM_PREVIOUS,

▪ For requestedLength: MIN_BLOCK_LENGTH and MAX_BLOCK_LENGTH.

3.1.4.1.5 Return value

None.

3.1.4.1.6 Originator

Radio application.

3.1.4.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):

▪ NoAlternateReferencing,

▪ MinFromPrevious and MaxFromPrevious,

▪ MinBlockLength and MaxBlockLength,

▪ RelativeMILT.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 46
All Rights Reserved.

3.1.4.1.8 Behavior requirements

An active instance of RelativeCreation shall, on a call to scheduleRelativeBurst(), handle the

exceptions of the operation as specified in section 3.2.

An active instance of RelativeCreation shall, on a call to scheduleRelativeBurst() that raised

no exception:

▪ If CREATION_STORAGE calls (see section 4.6) are stored, wait until storage becomes

available,

▪ Store the call for later usage by CreationControl (see section 2.3.2),

▪ Return the call to the radio application.

3.1.5 Transceiver::BurstControl::AbsoluteCreation

3.1.5.1 scheduleAbsoluteBurst Operation

3.1.5.1.1 Overview

scheduleAboluteBurst() commands the channels to schedule creation of a burst for which core burst

will start at the specified requestedStartTime, as depicted in the following figure:

TransceiverRadio
application

API RF

scheduleAbsoluteBurst(
requestedStartTime, …)

[Tx] pushTransmittedPacket(
<first packet>)

[Rx] pushReceivedPacket(
<first packet>)

The created burst starts at:
start time = requestedStartTime

[Tx]: first packet needs to be
available on time

requestedStartTime is a time spec
applying on transceiver time, a
monotonic increasing time that may
be coupled with another time of the
radio platform

Figure 43 Principle of scheduleAbsoluteBurst()

3.1.5.1.2 Associated properties

CREATION_STORAGE (see section 4.8) specifies the maximum number of calls to creation

operations that channels can store in advance, including calls to scheduleAbsoluteBurst().

TIME_COUPLING (see section 4.2) specifies coupling of transceiver time with other times of the

radio platform.

ABSOLUTE_MILT (see section 4.13) specifies the minimum invocation lead time for correct real-

time usage of the operation.

ABSOLUTE_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 47
All Rights Reserved.

3.1.5.1.3 Declaration

The declaration of the operation is specified as:

void scheduleAbsoluteBurst(

 in TimeSpec requestedStartTime,

 in BlockLength requestedLength);

3.1.5.1.4 Parameters

Name Type Description

requestedStartTime TimeSpec

(see § 3.4.16)
Specifies the value of start time of the burst to create,

expressed according to transceiver time.

requestedLength BlockLength

(see § 3.4.3)
Number of baseband samples to be processed during the

processing phase associated to the burst:

▪ If equal to UndefinedBlockLength: specifies an

undefined value,

▪ If not equal to UndefinedBlockLength: specifies

the number of baseband samples of the baseband

block to be processed during PROCESSING (see

section 2.3.1).

Table 5 Specification of scheduleAbsoluteBurst() parameters

The parameters validity properties are specified as (see section 4.7):

▪ For requestedLength: MIN_BLOCK_LENGTH and MAX_BLOCK_LENGTH.

3.1.5.1.5 Return value

None.

3.1.5.1.6 Originator

Radio application.

3.1.5.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):

▪ MaxNanoseconds,

▪ MinBlockLength and MaxBlockLength,

▪ AbsoluteMILT.

3.1.5.1.8 Behavior requirements

An active instance of AbsoluteCreation shall, on a call to scheduleAbsoluteBurst(), handle the

exceptions of the operation as specified in section 3.2.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 48
All Rights Reserved.

An active instance of AbsoluteCreation shall, on a call to scheduleAbsoluteBurst() that raised

no exception:

▪ If CREATION_STORAGE calls (see section 4.8) are stored, wait until storage becomes

available,

▪ Store the call for later usage by CreationControl (see section 2.3.2),

▪ Return the call to the radio application.

3.1.6 Transceiver::BurstControl::StrobedCreation

3.1.6.1 scheduleStrobedBurst Operation

3.1.6.1.1 Overview

scheduleStrobedBurst()commands the channels to schedule creation of a burst for which the core

burst will start at a specified delay taken after the start time of the next strobe occurrence of the

specified strobe source, as depicted in the following figure:

TransceiverRadio
application

API RF

re
q

u
es

te
d

D
el

a
y

requestedStrobe
Source

Next strobe is the first strobe
occurring after the call to
scheduleStrobedBurst()

scheduleStrobedBurst(
requestedStrobeSource,

requestedDelay, …)

[Tx] pushTransmittedPacket(
<first packet>)

[Rx] pushReceivedPacket(
<first packet>)

The created burst starts at:
start time = next strobe +
requestedDelay

[Tx]: first packet needs to be
available on time

Strobes before the call to
scheduleStrobedBurst() are ignored

Figure 44 Principle of scheduleStrobedBurst()

The standard strobe sources are specified by the following table:

Name Description

ApplicationStrobe Strobes delivered by the radio application using the ApplicationStrobe interface.

TimeRef_PPS Strobes delivered by the PPS signal of a wired time reference.

GNSS_PPS Strobes delivered by the PPS signal of a GNSS system.

UserStrobe1 User-defined strobe 1.

UserStrobe2 User-defined strobe 2.

UserStrobe3 User-defined strobe 3.

UserStrobe4 User-defined strobe 4.

Table 6 Specification of strobe sources

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 49
All Rights Reserved.

Additional strobe sources can be implemented if required by usage context.

3.1.6.1.2 Associated properties

CREATION_STORAGE (see section 4.8) specifies the maximum number of calls to creation

operations that channels can store in advance, including calls to scheduleStrobedBurst().

STROBED_MILT (see section 4.13) specifies the minimum invocation lead time for correct real-time

usage of the operation.

STROBED_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.6.1.3 Declaration

The declaration of the operation is specified as:

void scheduleStrobedBurst(

 in StrobeSource requestedStrobeSource,

 in Delay requestedDelay,

 in BlockLength requestedLength);

3.1.6.1.4 Parameters

Name Type Description

requestedStrobeSource StrobeSource

(see § 3.4.14)
Specifies the strobe source to be used.

requestedDelay Delay

(see § 3.4.7)
Specifies the delay between the next strobe occurrence on

strobe source and start time of the burst to create.

requestedLength BlockLength

(see § 3.4.3)
Number of baseband samples to be processed during the

processing phase associated to the burst:

▪ If equal to UndefinedBlockLength: specifies an

undefined value,

▪ If not equal to UndefinedBlockLength: specifies

the number of baseband samples of the baseband

block to be processed during PROCESSING (see

section 2.3.1).

Table 7 Specification of scheduleStrobedBurst() parameters

The parameters validity properties are specified as (see section 4.7):

▪ For requestedStrobeSource: STROBE_SOURCES,

▪ For requestedDelay: MIN_FROM_STROBE and MAX_FROM_STROBE,

▪ For requestedLength: MIN_BLOCK_LENGTH and MAX_BLOCK_LENGTH.

3.1.6.1.5 Return value

None.

3.1.6.1.6 Originator

Radio application.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 50
All Rights Reserved.

3.1.6.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):

▪ StrobeSource,

▪ MinFromStrobe and MaxFromStrobe,

▪ MinBlockLength and MaxBlockLength.

3.1.6.1.8 Behavior requirements

An active instance of StrobedCreation shall, on a call to scheduleStrobedBurst(), handle the

exceptions of the operation as specified in section 3.2.

An active instance of StrobedCreation shall, on a call to scheduleStrobedBurst() that raised no

exception:

▪ If CREATION_STORAGE calls (see section 4.8) are stored, wait until storage becomes

available,

▪ Store the call for later usage by CreationControl (see section 2.3.2),

▪ Return the call to the radio application.

3.1.7 Transceiver::BurstControl::Termination

3.1.7.1 setBlockLength operation

3.1.7.1.1 Overview

setBlockLength() specifies the length of baseband block applicable for termination of an ongoing

processing phase.

3.1.7.1.2 Associated properties

BLOCK_LENGTH_MILT (see section 4.13) specifies the minimum invocation lead time for correct

real-time usage of the operation.

BLOCK_LENGTH_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.7.1.3 Declaration

The declaration of the operation is specified as:

void setBlockLength(

 in BlockLength requestedLength);

3.1.7.1.4 Parameters

Name Type Description

requestedLength BlockLength

(see § 3.4.3)
Number of baseband samples to be processed during

PROCESSING (see section 2.3.1).

Table 8 Specification of setBlockLength() parameters

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 51
All Rights Reserved.

The parameters validity properties are specified as (see section 4.7):

▪ For requestedLength: MIN_BLOCK_LENGTH and MAX_BLOCK_LENGTH.

3.1.7.1.5 Return value

None.

3.1.7.1.6 Originator

Radio application.

3.1.7.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):

▪ NoOngoingProcessing,

▪ MinBlockLength and MaxBlockLength.

3.1.7.1.8 Behavior requirements

An active instance of Termination shall, on a call to setBlockLength(), handle the exceptions of

the operation as specified in section 3.2.

An active instance of Termination shall, on a call to setBlockLength() that raised no exception:

▪ Set value of applicableBurstLength to value of requestedLength,

▪ Notify the PROCESSING state of Channels of availability of a new

applicableBurstLength value,

▪ Return the call to the radio application.

3.1.7.2 stopBurst operation

3.1.7.2.1 Overview

stropBurst() commands an ongoing processing phase to immediately terminate.

3.1.7.2.2 Associated properties

None.

3.1.7.2.3 Declaration

The declaration of the operation is specified as:

void stopBurst();

3.1.7.2.4 Parameters

None.

3.1.7.2.5 Return value

None.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 52
All Rights Reserved.

3.1.7.2.6 Originator

Radio application.

3.1.7.2.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):

▪ NoOngoingProcessing.

3.1.7.2.8 Behavior requirements

An active instance of Termination shall, on a call to setBlockLength(), handle the exceptions of

the operation as specified in section 3.2.

An active instance of Termination shall, on a call to stopBurst() that raised no exception:

▪ Set value of applicableBurstLength to the value enabling fastest possible

termination of the ongoing processing phase,

▪ Notify the PROCESSING state of Channels of availability of a new

applicableBurstLength value,

▪ Return the call to the radio application.

3.1.8 Transceiver::BasebandSignal::SamplesReception

3.1.8.1 pushRxPacket Operation

3.1.8.1.1 Overview

pushRxPacket() provides the radio application with the next packet of an Rx block received by one

Rx channel, as depicted in following figure:

TransceiverRadio
application

API Rx RF

Down-conversion latency

Last packet

sample

First packet

sample

pushedPacket

pushRxPacket(
pushedPacket,

endOfBlock)

pushedPacket has been processed by
the radio application

endOfBurst specifies if the packet is
the last packet of the received
samples block

Down-conversion generates a
pushedPacket with a length equal to
defaultRxPacketsLength, except last
packet that can be shorter

Last

packet

First

packet

Received samples block

Pushed packets

Figure 45 Principle of pushRxPacket()

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 53
All Rights Reserved.

Rx packets are sent by the Rx channel until the last processed sample (see section 2.3.1.1.5) has

been transferred.

The first packet is sent after the ProcessingStart transition (see section 2.3.1).

A boolean flag specifies to the radio application that a received packet is the last packet of the

received samples block. The next received packet is the first packet of the next received samples

block.

3.1.8.1.2 Associated properties

RX_MIN_BASEBAND_LEVEL and RX_MAX_BASEBAND_LEVEL (see section 4.10) specify the

interval into which the level of baseband signal fits.

RX_META_DATA (see section 4.5) specifies if meta-data is associated to Rx packets.

RX_PACKET_WCET (see section 4.15) specifies the worst-case execution time of the primitive for

correct real-time operation of the transceiver instance.

3.1.8.1.3 Declaration

The declaration of the operation is specified as, if RX_META_DATA is equal to FALSE:

void pushRxPacket(

 in BasebandPacket rxPacket,

 in boolean endOfBlock);

The declaration of the operation is specified as, if RX_META_DATA is equal to TRUE:

void pushRxPacket(

 in BasebandPacket rxPacket,

 in boolean endOfBlock,

 in RxMetaData rxMetaData);

3.1.8.1.4 Parameters

Name Type Description

rxPacket BasebandPacket

(see § 0)
The transferred Rx packet within the Rx block.

endOfBlock boolean Specifies if rxPacket is the last packet of the Rx block.

rxMetaData

If RX_META-DATA is equal

to TRUE.

RxMetaData

(see § 3.4.12)
Specifies the user-defined meta-data associated to the Rx

packet.

Table 9 Specification of pushRxPacket() parameters

No parameters validity property is specified for use services.

3.1.8.1.5 Return value

None.

3.1.8.1.6 Originator

Rx channel.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 54
All Rights Reserved.

3.1.8.1.7 Exceptions

Not applicable to a use service.

3.1.8.1.8 Behavior requirements

nbrFullPackets and tailPacketLength are defined as, respextively, the quotient and the remainder

of the Euclidean division of applicableBlockLength by applicableRxPacketsLength.

Active instances of SamplesReception shall transfer the Rx block with a succession of

nbrFullPackets calls to pushRxPacket(), with the length of rxPacket equal to

applicableRxPacketsLength.

Active instances of SamplesReception shall, if tailPacketLength is greater than 0, make a last

call to pushRxPacket() with the length of rxPacket equal to tailPacketLength.

Active instances of SamplesReception shall set the value of endOfBlock as follows:

▪ false: for all calls to pushRxPacket() except the last one,

▪ true: for the last call to pushRxPacket().

Active instances of SamplesReception shall wait for the radio application to return the previous

call to pushRxPacket() before making a next call to pushRxPacket().

3.1.9 Transceiver::BasebandSignal::SamplesTransmission

3.1.9.1 pushTxPacket Operation

3.1.9.1.1 Overview

pushTxPacket() provides a Tx channel with the next packet of a Tx forwarded block to be stored

prior to up-conversion, as depicted in following figure:

TransceiverRadio
application

API Tx RF

Up-
conversion

Storage

Last

packet

First

packet

Transmitted samples block

Pushed packets

pushTxPacket(
pushedPacket,

endOfBlock)

pushedPacket is stored and available
for up-conversion
endOfBurst specifies if the packet is
the last packet of the transmitted
samples block

Wait, if needed, for storage to
become available before storing

Last packet

sample

First packet

sample

pushedPacket
Up-conversion latency

Up-conversion generates the part of
the Tx burst corresponding to
pushedPacket

Figure 46 Principle of pushTxPacket()

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 55
All Rights Reserved.

The length of each packet is determined by the radio application, and can vary from one packet to

another down to a single sample packet.

The first packet of the first Tx forwarded block is the first packet after ResetCompleted transition

(see section 2.3.1.2.1).

A flag specifies to the Tx channel the last packet of the Tx forwarded block. Next transmitted

packet is the first packet of the next Tx forwarded block.

3.1.9.1.2 Associated properties

TX_META_DATA (see section 4.5) specifies if meta-data is associated to Tx packets.

TX_BASEBAND_STORAGE (see section 4.8) specifies the number of baseband samples that a

transceiver can store in advance of their usage by up-conversion.

TX_PACKET_MILT (see section 4.13) specifies the minimum invocation lead time for correct real-

time usage of the operation.

TX_MIN_BASEBAND_LEVEL and TX_MAX_BASEBAND_LEVEL (see section 4.10) specify the

interval into which the level of baseband signal must belong for correct Rx channel operation.

TX_PACKET_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.9.1.3 Declaration

The declaration of the operation is specified as, if TX_META_DATA is equal to FALSE:

void pushTxPacket(

 in BasebandPacket txPacket,

 in boolean endOfBlock);

The declaration of the operation is specified as, if TX_META_DATA is equal to TRUE:

void pushTxPacket(

 in BasebandPacket txPacket,

 in boolean endOfBlock,

 in TxMetaData txMetaData);

3.1.9.1.4 Parameters

Name Type Description

txPacket BasebandPacket

(see § 0)
The transferred Tx packet.

endOfBlock boolean Specifies that txPacket is the last packet of the Tx forwarded

block.

txMetaData

If TX_META-DATA is equal

to TRUE.

TxMetaData

(see § 3.4.12)
Specifies the user-defined meta-data associated to the Tx

packet.

Table 10 Specification of pushTxPacket() parameters

The parameters validity properties are specified as (see section 4.7):

▪ For length of txPacket: MAX_PACKETS_LENGTH.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 56
All Rights Reserved.

3.1.9.1.5 Return value

None.

3.1.9.1.6 Originator

Radio application.

3.1.9.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):

▪ MaxTxPacketsLength,

▪ TxPacketsMILT.

3.1.9.1.8 Behavior requirements

Active instances of SamplesTransmission shall, on a call to pushTxPacket(), handle the

exceptions of the operation as specified in section 3.2.

Active instances of SamplesTransmission shall, on a call to pushTxPacket() that raised no

exception:

▪ Wait, if needed, until all baseband samples of a previous burst have entered up-

conversion,

▪ Wait, if storage is saturated, for consumption by up-conversion of previously stored

samples to free storage capacity,

▪ Store the samples of txPacket for later usage by up-conversion,

▪ Depending on value of endOfBlock:

o false: Tx forwarded block is not ended,

o true: Tx forwarded block is ended, the last sample of txPacket is the last sample

of the Tx forwarded block,

▪ Return the call to the radio application.

A channel shall be capable to store up to TX_BASEBAND_STORAGE (see section 4.6) baseband

samples.

3.1.10 Transceiver::BasebandSignal::RxPacketsLengthControl

3.1.10.1 setRxPacketsLength operation

3.1.10.1.1 Overview

setRxPacketsLength() provides Rx channels with the size of received packets to be used at creation

of forthcoming Rx bursts.

3.1.10.1.2 Associated properties

RX_PACKETS_LENGTH_WCET (see section 4.15) specifies the worst-case execution time of the

primitive.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 57
All Rights Reserved.

3.1.10.1.3 Declaration

The declaration of the operation is specified as:

void setRxPacketsLength(

 in PacketLength requestedLength);

3.1.10.1.4 Parameters

Name Type Description

requestedLength PacketLength

(see § 3.4.12)
Specifies the new value for

applicableRxPacketsLength attribute (see § 3.3.1.2).

Table 11 Specification of setRxPacketsLength() parameters

The parameters validity properties are specified as (see section 4.7):

▪ For requestedLength: MAX_PACKETS_LENGTH.

3.1.10.1.5 Return value

None.

3.1.10.1.6 Originator

Radio application.

3.1.10.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):

▪ MaxRxPacketsLength.

3.1.10.1.8 Behavior requirements

An active instance of RxPacketsLengthControl shall, on a call to setRxPacketsLength(),

handle the exceptions of the operation as specified in section 3.2.

An active instance of RxPacketsLengthControl shall, on a call to setRxPacketsLength() that

raised no exception:

▪ Sets value of applicableRxPacketsLength attribute (see section 3.3.1.2) to value of

requestedLength parameter,

▪ Return the call to the radio application.

3.1.11 Transceiver::Tuning::InitialTuning

3.1.11.1 setTuning Operation

3.1.11.1.1 Overview

setTuning() commands the channels to store a tuning parameters set (composed of tuning preset,

carrier frequency (fc) and gain (G), see section 1.1.4) than will be later applied to the tuned burst,

as depicted in the following figure:

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 58
All Rights Reserved.

TransceiverRadio
application

API

setTuning(
requestedTuningPreset,

requestedFrequency,
requestedGain, …)

[stored burst creation
operation is used by

creationControl]

RF

The tuned burst starts when the
tuning specified by the tuning
parameters set has been applied

Tuned burst

The call has to be done before the
stored burst creation operation is
used

The tuning parameters set specifies,
if needed, new value(s) for tuning
preset, fc and/or G

Figure 47 Principle of setTuning()

The call to setTuning() for a given burst needs to done, if needed, before CreationControl

enters in INITIATING state for the considered burst (see section 2.3.2).

3.1.11.1.2 Associated properties

TUNING_ASSOCIATION (see section 4.3) specifies how CreationControl (see section 2.3.2)

associates stored tuning calls to created bursts during INITIATING state.

TUNING_STORAGE (see section 4.8) specifies the maximum number of calls to setTuning()

channels can store in advance.

TUNING_MILT (see section 4.13) specifies the minimum invocation lead time in advance of the call

to the creation operation of the tuned burst.

TUNING_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.11.1.3 Declaration

The declaration of the operation is specified as:

void setTuning(

 in TuningPreset requestedPreset,

 in CarrierFreq requestedFrequency,

 in Gain requestedGain,

 in BurstNumber requestedBurstNumber);

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 59
All Rights Reserved.

3.1.11.1.4 Parameters

Name Type Description

requestedPreset TuningPreset

(see § 3.4.14)
Tuning preset to be applied under control of burst creation

during a TUNING state:

▪ If equal to UndefinedTuningPreset: specifies to

reuse the previously active tuning preset,

▪ If not equal to UndefinedTuningPreset: specifies

the tuning preset to apply.

requestedFrequency CarrierFreq

(see § 3.4.6)
Carrier frequency (fc) to be applied under control of burst

creation during a TUNING state:

▪ If equal to UndefinedCarrierFreq: specifies to

reuse the previously active carrier frequency,

▪ If not equal to UndefinedCarrierFreq: specifies

the carrier frequency to apply.

requestedGain Gain

(see § 3.4.10)
Gain (G) to be applied under control of burst creation

during a TUNING state:

▪ If equal to UndefinedGain: specifies to reuse the

previously active gain,

▪ If not equal to UndefinedGain: specifies the gain to

apply.

requestedBurstNumber BurstNumber

(see § 3.4.5)
Specifies a burst number for burst creation to determine the

tuned burst for the specified tuning parameters set,

depending on value of TUNING_ASSOCIATION:

▪ If equal to sequential: the value is ignored,

▪ If equal to burstReferencing: the specified

number of the burst for which the specified tuning

parameters set applies.

Table 12 Specification of setTuning() parameters

The parameters validity properties are specified as (see section 4.7):

▪ For requestedPreset: MAX_TUNING_PRESET,

▪ For requestedFrequency: MIN_CARRIER_FREQ and MAX_CARRIER_FREQ,

▪ For requestedGain: MIN_GAIN and MAX_GAIN.

3.1.11.1.5 Return value

None.

3.1.11.1.6 Originator

Radio application.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 60
All Rights Reserved.

3.1.11.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):

▪ MaxTuningPreset,

▪ MinCarrierFreq and MaxCarrierFreq,

▪ MinGain and MaxGain,

▪ TuningMILT.

3.1.11.1.8 Behavior requirements

An active instance of InitialTuning shall, on a call to setTuning(), handle the exceptions of the

operation as specified in section 3.2.

An active instance of InitialTuning shall, on a call to setTuning() that raised no exception:

▪ Wait, if storage is saturated, for usage of a previously stored call to free capacity,

▪ Store the call by order of arrival for later usage by CreationControl (see section

2.3.2),

▪ Return the call to the radio application.

A channel shall be capable to store up to TUNING_STORAGE (see section 4.8) setTuning() calls.

3.1.12 Transceiver::Tuning::Retuning

3.1.12.1 retune Operation

3.1.12.1.1 Overview

retune() commands the channels to change the tuning during an ongoing processing phase,

specifying the delay to take from the start time of the burst before starting to retune, as depicted in

following figure:

TransceiverRadio
application

retune(
requestedFrequency,

requestedGain,
requestedDelay)

API RF

Retuning

Start time of a processing phase

re
q

u
es

te
d

D
el

a
y

The call to retune() happens when a
processing phase is ongoing

Retuning starts at:
start time of ongoing burst +
requestedDelay

Retuning applies the specified
requestedFrequency and
requestedGain

Figure 48 Principle of retune()

An undefined delay specifies retuning to take place immediately after the call to retune().

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 61
All Rights Reserved.

3.1.12.1.2 Associated properties

RETUNING_DURATION (see section 4.8) specifies the maximum duration of RETUNING state (see

section 2.3.4).

RETUNING_MILT (see section 4.13) specifies the minimum invocation lead time for correct real-

time usage of the operation.

RETUNING_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.12.1.3 Declaration

The declaration of the operation is specified as:

void retune(

 in CarrierFreq requestedFrequency,

 in Gain requestedGain,

 in Delay requestedDelay);

3.1.12.1.4 Parameters

Name Type Description

requestedFrequency CarrierFreq

(see § 3.4.6)
Carrier frequency (fc) to be applied by channels during the

scheduled RETUNING state:

▪ If equal to UndefinedCarrierFreq: specifies to

reuse the previously active carrier frequency,

▪ If not equal to UndefinedCarrierFreq: specifies

the carrier frequency to apply.

requestedGain Gain

(see § 3.4.10)
Gain (G) to be applied by channels during the scheduled

RETUNING state:

▪ If equal to UndefinedGain: specifies to reuse the

previously active gain,

▪ If not equal to UndefinedGain: specifies the gain to

apply.

requestedDelay Delay

(see § 3.4.7)
Delay to take after the start time of the ongoing processing

phase for triggering the RetuningStart transition:

▪ If equal to UndefinedDelay: specifies that the

RetuningStart transition is triggered immediately,

▪ If not equal to UndefinedDelay: specifies the

applicable delay.

Table 13 Specification of retune() parameters

The parameters validity properties are specified as (see section 4.7):

▪ For requestedFrequency: MIN_CARRIER_FREQ and MAX_CARRIER_FREQ,

▪ For requestedGain: MIN_GAIN and MAX_GAIN,

▪ For requestedDelay: MIN_FROM_ONGOING and MAX_FROM_ONGOING.

3.1.12.1.5 Return value

None.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 62
All Rights Reserved.

3.1.12.1.6 Originator

Radio application.

3.1.12.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):

▪ NoOngoingProcessing,

▪ MinCarrierFreq and MaxCarrierFreq,

▪ MinGain and MaxGain,

▪ MinFromOngoing and MaxFromOngoing,

▪ RetuningMILT.

3.1.12.1.8 Behavior requirements

An active instance of Retuning shall, on a call to retune(), handle the exceptions of the operation

as specified in section 3.2.

An active instance of Retuning shall, on a call to retune() that raised no exception, with value of

requestedDelay equal to UndefinedDelay:

▪ Return the call to retune() to the radio application,

▪ Trigger the RetuningStart transition (see section 2.3.4) immediately after.

An active instance of Retuning shall, on a call to retune() that raised no exception, with value of

requestedDelay not equal to UndefinedDelay:

▪ Return the call to retune() to the radio application,

▪ Trigger the RetuningStart transition (see section 2.3.4) at start time of the ongoing

processing phase plus value of requestedDelay.

A channel shall, during RETUNING state, act on the carrier frequency according to

requestedFrequency value:

▪ If equal to UndefinedCarrierFreq: keep the carrier frequency unchanged.

▪ If not equal to UndefinedCarrierFreq: apply requestedFrequency as the new

carrier frequency,

A channel shall, during RETUNING state, act on the gain according to requestedGain value:

▪ If equal to UndefinedGain: keep the gain unchanged,

▪ If not equal to UndefinedGain: apply requestedGain as the new gain,

3.1.13 Transceiver::Notifications::Events

3.1.13.1 notifyEvent Operation

3.1.13.1.1 Overview

An event is defined as occurrence of a condition related to operation of a channel.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 63
All Rights Reserved.

notifyEvent() informs the radio application that a defined event has occurred as depicted in

following figure:

TransceiverRadio
application

API

notifyEvent(event) An event occurred

Notification has been processed

Transceiver bahavior is not
influenced by the notification

Figure 49 Principle of notifyEvent()

Events are specified by the following table:

Name / <eventName> Description See §

eventProcessingStart Applies to: all channels.

Condition: channels make a ProcessingStart transition.

2.3.1

eventProcessingStop Applies to: all channels.

Condition: channels make a ProcessingStop transition.

2.3.1

eventSilenceStop Applies to: channels capable of radio silence.

Condition: channels make a SilenceStart transition.

2.3.2

eventSilenceStart Applies to: channels capable of radio silence.

Condition: channels make a SilenceStop transition.

2.3.2

Table 14 Specification of events

3.1.13.1.2 Associated properties

EVENTS (see section 4.40) specifies, for each event, if event notification has to be performed.

EVENTS_WCET (see section 4.15) specifies the worst-case execution time of the primitive for

correct real-time operation of the transceiver instance.

3.1.13.1.3 Declaration

The declaration of the operation is specified as:

void notifyEvent(

 in Event notifiedEvent);

3.1.13.1.4 Parameters

Name Type Description

notifiedEvent Event

(see §3.4.9)
Enumerated value specifying the notified event.

Table 15 Specification of notifyEvent() parameters

No parameters validity property is specified for use services.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 64
All Rights Reserved.

3.1.13.1.5 Return value

None.

3.1.13.1.6 Originator

Transceiver.

3.1.13.1.7 Exception

Not applicable to use services.

3.1.13.1.8 Behavior requirements

Channels with an active instance of Events shall, when <eventName> happens and

EVENTS.<eventName> is equal to true, call notifyEvent() with notifiedEvent equal to

<eventName>.

Channels with an active instance of Events shall, if channels have been set in radio silence by

another agent than the radio application when INITIALIZATION terminates, call notifyEvent()

with notifiedEvent equal to eventSilenceStart.

3.1.14 Transceiver::Notifications::Errors

3.1.14.1 notifyError Operation

3.1.14.1.1 Overview

An error is defined as an abnormal situation related to channels internal execution errors.

notifyError() informs the radio application that a defined error (see section 3.2) has occurred as

depicted in following figure:

TransceiverRadio
application

API

notifyError(error) An error occurred

Notification has been processed

Other transceiver’s reaction in front
of the error depends on errors
handling strategy

Figure 50 Principle of notifyError()

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 65
All Rights Reserved.

Errors are specified by the following table:

Name / <errorName> Specification See §

error1stSampleDelayed Applies to: Tx channels with at least one active instance of a

timely creation service.

Condition: the first sample of a Tx forwarded block is not

available before activation time.

2.3.2

error1stSampleTimeout Applies to: Tx channels with at least one active instance of a

timely creation service, if

ERRORS.err1stSampleDelayed.reaction is equal to

mitigating.

Condition: during a burst creation, the first sample of a Tx

forwarded block is not available once

1ST_SAMPLE_TIMEOUT nanoseconds have elapsed after

activation time.

2.3.2

0

errorBurstOverlap Applies to: channels with at least one active instance of a

timely creation service.

Condition: activation time of a burst under creation and

termination time of the previous burst do not enable respect

value of INTER-PROCESS.

2.3.2

4.8

errorRxOverflow Applies to: Rx channels.

Condition: the radio application did not return a

pushRxPacket() call when Rx channels have to make the

next call.

3.1.7

errorShorterTxBlock Applies to: Tx channels.

Condition: a Tx forwarded block is ended (value of

endOfBlock in a call to pushTxPacket() is set to true) and

requestedLength is equal to UndefinedBlockLength or

length of the baseband block is smaller than a defined value

of requestedLength.

2.3.1

errorTxUnderflow Applies to: Tx channels.

Condition: baseband samples are not available early enough

for a Tx channel to proceed with up-conversion during a

PROCESSING state.

3.1.8

errorTuningDelayed Applies to: channels with an active instance of

InitialTuning.

Condition: during a burst creation, the TuningStop

transition has not occurred at the time required for

ProcessingStart transition to satisfy the start time.

3.1.11

errorTuningTimeout Applies to: channels with an active instance of

InitialTuning, if

ERRORS.errTuningDelayed.reaction is equal to

mitigating.

Condition: during a burst creation, TuningStop transition

has not occurred once TUNING_TIMEOUT nanoseconds

elapsed after the activation time.

2.3.2

0

Table 16 Specification of errors

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 66
All Rights Reserved.

3.1.14.1.2 Associated properties

ERRORS (see section 4.4) specifies, for each error, how it is handled by active instances of Errors:

▪ Applicable behavior when the error happens,

▪ If error notification has to be performed.

ERRORS_WCET (see section 4.15) specifies the worst-case execution time of the primitive for

correct real-time operation of the transceiver instance.

3.1.14.1.3 Declaration

The declaration of the operation is specified as:

void notifyError(

 in Error notifiedError);

3.1.14.1.4 Parameters

Name Type Description

notifiedError Error

(see § 3.4.8)
Specifies the notified error.

Table 17 Specification of notifyError() parameters

No parameters validity property is specified for use services.

3.1.14.1.5 Return value

None.

3.1.14.1.6 Originator

Transceiver.

3.1.14.1.7 Exceptions

Not applicable to use services.

3.1.14.1.8 Behavior requirements

Error notification of <errorName> is defined as a call to notifyError(), independently of other

channels operation, with notifiedError parameter equal to <errorName>.

Channels with an active instance of Errors, when <errorName> happens and

ERRORS.<errorName>.reaction is equal to fatal, have unspecified behavior.

Channels with an active instance of Errors shall, when <errorName> happens and

ERRORS.<errorName>.reaction is equal to resetting:

▪ Trigger a RuntimeReset transition,

▪ If ERRORS.<errorName>.isNotified is equal to true, perform error notification.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 67
All Rights Reserved.

Channels with an active instance of Errors shall, when <errorName> happens and

ERRORS.<errorName>.reaction is equal to mitigation:

▪ Perform the error mitigation behavior specified in Table 18,

▪ If ERRORS.<errorName>.isNotified is equal to true, perform error notification.

Errors mitigation behaviors are specified by the following table:

Error name Error mitigation behavior

error1stSampleDelayed Wait until the first baseband sample is available, then make a

ProcessingStart transition (entry in PROCESSING state,

see section 2.3.1).

error1stSampleTimeout Unspecified.

errorBurstOverlap Call setBlockLength() with requestedLength shortening the

length of previous burst so that its termination time is smaller

than the tuning time of the burst under creation.

errorRxOverflow Drop the baseband samples delivered by down-conversion

until the pending call to pushRxPacket() returns.

errorShorterTxBlock Call setBlockLength() with requestedLength equal to the

length of the Tx forwarded block.

errorTxUnderflow Pad missing baseband samples with unspecified samples until

new baseband samples are available.

errorTuningDelayed Wait until TuningStop transition, then make a

ProcessingStart transition (entry in PROCESSING state,

see section 2.3.1).

errorTuningTimeout Unspecified.

Table 18 Specification of errors mitigation behaviors

3.1.15 Transceiver::GainControl::GainChanges

3.1.15.1 indicateGain Operation

3.1.15.1.1 Overview

indicateGain() provides the radio application with a new value of gain decided by channels during

a processing phase as depicted in following figure:

TransceiverRadio
application

API

indicateGain(gain) Gain has been modified

Indication has been recorded

Figure 51 Principle of indicateGain()

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 68
All Rights Reserved.

3.1.15.1.2 Associated properties

GAIN_CHANGE_WCET (see section 4.15) specifies the worst-case execution time of the primitive for

correct real-time operation of the transceiver instance.

3.1.15.1.3 Declaration

The declaration of the operation is specified as:

void indicateGain(

 in Gain newGain,

 in SampleNumber firstValidSample

);

3.1.15.1.4 Parameters

Name Type Description

newGain Gain

(see § 3.4.10)
Specifies the new value of gain.

firstValidSample SampleNumber

(see § 3.4.14)
Sample number of the first sample in the Rx block after

which the tuning is stable again.

Table 19 Specification of indicateGain() parameters

No parameters validity property is specified for use services.

3.1.15.1.5 Return value

None.

3.1.15.1.6 Originator

Transceiver.

3.1.15.1.7 Exceptions

Not applicable to use services.

3.1.15.1.8 Behavior requirements

An active instance of GainChanges shall indicate each new value of gain using indicateGain().

3.1.16 Transceiver::GainControl::GainLocking

3.1.16.1 lockGain Operation

3.1.16.1.1 Overview

lockGain() commands Rx channels to lock the applied Rx gain, that becomes not modifiable by

AGC.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 69
All Rights Reserved.

TransceiverRadio
application

API RF

lockGain()
Rx gain is locked
AGC cannot modify it

Figure 52 Principle of lockGain()

3.1.16.1.2 Associated properties

LOCK_GAIN_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.16.1.3 Declaration

The declaration of the operation is specified as:

void lockGain();

3.1.16.1.4 Parameters

None.

3.1.16.1.5 Returned value

None.

3.1.16.1.6 Originator

Radio application.

3.1.16.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):

▪ NoOngoingProcessingException.

3.1.16.1.8 Behavior requirements

An active instance of GainLocking shall, on a call to lockGain():

▪ Lock value of Rx gain at its current value independently of AGC operation,

▪ Return the call to the radio application.

3.1.16.2 unlockGain Operation

3.1.16.2.1 Overview

unlockGain() commands Rx channels to unlock Rx gain, that becomes subject to modifications

under control of AGC.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 70
All Rights Reserved.

TransceiverRadio
application

API RF

unlockGain()
Rx gain is unlocked
AGC can change it again

Figure 53 Principle of unlockGain()

3.1.16.2.2 Associated properties

UNLOCK_GAIN_WCET (see section 4.15) specifies the maximum processing time for correct joint

real-time operation of radio application and transceiver.

3.1.16.2.3 Declaration

The declaration of the operation is specified as:

void unlockGain();

3.1.16.2.4 Parameters

None.

3.1.16.2.5 Returned value

None.

3.1.16.2.6 Originator

Radio application.

3.1.16.2.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):

▪ NoOngoingProcessingException.

3.1.16.2.8 Behavior requirements

An active instance of GainLocking shall, on a call to unlockGain():

▪ Enable Rx gain to be modified by AGC,

▪ Return the call to the radio application.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 71
All Rights Reserved.

3.1.17 Transceiver::TransceiverTime::TimeAccess

3.1.17.1 getCurrentTime Operation

3.1.17.1.1 Overview

getCurrentTime() commands the channels to return the value of transceiver time corresponding to

return time of the call, as depicted in following figure:

TransceiverRadio
application

getCurrentTime()

API

currentTime
currentTime is the time of return of
the call

Figure 54 Principle of getCurrentTime()

3.1.17.1.2 Associated properties

CURRENT_TIME_ACC (see section 4.12) specifies the accuracy of the returned currentTime value.

CURRENT_TIME_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.17.1.3 Declaration

The declaration of the operation is specified as:

void getCurrentTime(

 out TimeSpec currentTime);

3.1.17.1.4 Parameters

Name Type Description

currentTime TimeSpec

(see § 3.4.16)
Value of transceiver time when getCurrentTime()

returns.

Table 20 Specification of getCurrentTime() parameters

No parameters validity property is associated to out parameters.

3.1.17.1.5 Return value

None.

3.1.17.1.6 Originator

Radio application.

3.1.17.1.7 Exceptions

None.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 72
All Rights Reserved.

3.1.17.1.8 Behavior requirements

An active instance of TimeAccess shall, on a call to getCurrentTime():

▪ Set the return value of currentTime to a value belonging to value of transceiver time

when getCurrentTime() returns ± CURRENT_TIME_ACC,

▪ Return the call to the radio application.

3.1.17.2 getLastStartTime Operation

3.1.17.2.1 Overview

getLastStartTime() commands the channels to return the value of transceiver time corresponding to

the start time of the last burst created by the channels for which getLastStartTime() is called, and to

return its burst number, as depicted in following figure:

TransceiverRadio
application

getLastStartTime()

API

lastStartTime,
lastBusrtNumber

lastStartTime is the start time of the
last burst
lastBusrtNumber is the burst number
of the last burst

Figure 55 Principle of getLastStartTime()

LAST_START_TIME_ACC (see section 4.12) specifies the accuracy of the returned lastStartTime

value.

LAST_START_TIME_WCET (see section 4.15) specifies the maximum processing time for correct

joint real-time operation of radio application and transceiver.

3.1.17.2.2 Declaration

The declaration of the operation is specified as:

void getLastStartTime(

 out TimeSpec lastStartTime,

 out BurstNumber lastBurstNumber);

3.1.17.2.3 Parameters

Name Type Description

lastStartTime TimeSpec

(see § 3.4.16)
Value of transceiver time for the start time of last

created burst.

lastBurstNumber BurstNumber

(see § 3.4.5)
Number of the last created burst.

Table 21 Specification of getLastStartTime() parameters

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 73
All Rights Reserved.

3.1.17.2.4 Return value

None.

3.1.17.2.5 Originator

Radio application.

3.1.17.2.6 Exceptions

None.

3.1.17.2.7 Behavior requirements

An active instance of TimeAccess shall, on a call to getLastStartTime(), if no burst was created by

the channels before the call to getLastStartTime():

▪ Set the return value of lastStartTime to UndefinedTimeSpec (see section 3.4.16),

▪ Set the return value of lastBurstNumber to zero (0),

▪ Return the call to the radio application.

An active instance of TimeAccess shall, on a call to getLastStartTime(), if at least one burst was

created by the channels before the call to getLastStartTime():

▪ Set the return value of lastStartTime to a value belonging to the actual start time of the

last burst created by the channels ± LAST_START_TIME_ACC,

▪ Set the return value of lastBurstNumber to the burst number of the last burst created by

the channels,

▪ Return the call to the radio application.

3.1.18 Transceiver::Strobing::AppplicationStrobe

3.1.18.1 triggerStrobe Operation

3.1.18.1.1 Overview

triggerStrobe() provides the channel with a strobe occurrence.

3.1.18.1.2 Associated properties

TRIGGER_STROBE_WCET (see section 4.15) specifies the worst-case execution time of the

primitive.

3.1.18.1.3 Declaration

The declaration of the operation is specified as:

void triggerStrobe(void);

3.1.18.1.4 Parameters

None.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 74
All Rights Reserved.

3.1.18.1.5 Returned value

None.

3.1.18.1.6 Originator

Radio application.

3.1.18.1.7 Exceptions

None.

3.1.18.1.8 Behavior requirements

A channel shall, on a call to triggerStrobe():

▪ Register the triggered strobe as a strobe occurrence for the ApplicationStrobe

strobe source,

▪ Return the call to the radio application.

3.2 Exceptions

3.2.1 Specification

An exception is defined as an abnormal situation related to the calling context or to parameters

values, detected during execution of a called operation of a provide service (see section 2.1).

General exceptions are specified by the following table:

Name Description See §

NoAlternateReferencing Applies to: an active instance of RelativeCreation in a

simplex transceiver or in a duplex transceiver with

ALTERNATE_REFERENCING equal to false.

Condition: the value of requestCrossReference in a call to

createRelativeBurst() is equal to true while the transceiver

instance is simplex or ALTERNATE_REFERENCING is false.

3.1.4

4.7

NoOngoingProcessing Applies to: active instance of TerminationContol or

Retuning.

Condition: setBlockLength() or retune() is called while the

channels are not in PROCESSING state.

3.1.7

3.1.12

2.3.1

StrobeSource Applies to: an active instance of StrobedCreation.

Condition: the value of requestedStrobeSource in a call to

createStrobedBurst() has a corresponding field in

STROBE_SOURCES equal to false.

3.1.6

4.7

Table 22 Specification of general exceptions

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 75
All Rights Reserved.

Range exceptions are specified by the following table:

Name Description See §

MinBlockLength

MaxBlockLength
Applies to: an active instance of a burst creation service or

Termination.

Condition: the value of requestedLength in call to a creation

operation or setBlockLength() is not equal to

UndefinedBlockLength and is lower / greater than

MIN_BLOCK_LENGTH / MAX_BLOCK_LENGTH.

3.1.7

4.7

MinCarrierFreq

MaxCarrierFreq
Applies to: an active instance of InitialTuning or

Retuning.

Condition: the value of requestedFrequency in a call to

retune() or setTuning() is not equal to

UndefinedCarrierFreq and is lower / greater than

MIN_CARRIER_FREQ / MAX_CARRIER_FREQ.

3.1.11

3.1.12

4.7

MinFromOngoing

MaxFromOngoing
Applies to: an active instance of Retuning.

Condition: the value of requestedDelay in a call to retune()

is not equal to UndefinedDelay and is lower / greater than

MIN_FROM_ONGOING / MAX_FROM_ONGOING.

3.1.12

4.7

MinFromPrevious

MaxFromPrevious
Applies to: an active instance of RelativeCreation.

Condition: the value of requestedDelay in a call to

createRelativeBurst() is lower / greater than

MIN_FROM_PREVIOUS / MAX_FROM_PREVIOUS.

3.1.4

4.7

MinFromStrobe

MaxFromStrobe
Applies to: an active instance of StrobedCreation.

Condition: the value of requestedDelay in a call to

createStrobedBurst() is lower / greater than

MIN_FROM_STROBE / MAX_FROM_STROBE.

3.1.6

4.7

MinGain

MaxGain
Applies to: an active instance of InitialTuning or

Retuning.

Condition: the value of requestedGain in a call to retune() or

setTuning() is not equal to UndefinedGain and is lower /

greater than MIN_GAIN / MAX_GAIN.

3.1.11

3.1.12

4.7

MaxNanoseconds Applies to: an active instance of AbsoluteCreation.

Condition: the value of field nanoseconds of

requestedStartTime in a call to createAbsluteBurst() is

greater than 999.999.999.

3.1.5

MaxRxPacketsLength Applies to: an active instance of

RxPacketsLengthControl.

Condition: the value of requestedLength in a call to

setRxPacketsLength() is greater than

MAX_PACKETS_LENGTH.

3.1.10

4.7

MaxTuningPreset Applies to: an active instance of InitialTuning.

Condition: the value of requestedPreset in a call to

setTuning() is greater than MAX_TUNING_PRESET.

3.1.11

4.7

MaxTxPacketsLength Applies to: an active instance of SamplesTransmission.

Condition: the length of txPacket in a call to pushTxPacket()

is greater than MAX_PACKETS_LENGTH.

3.1.8

4.7

Table 23 Specification of range exceptions

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 76
All Rights Reserved.

MILT exceptions are specified by the following table:

Name Description See §

AbsoluteMILT Applies to: an active instance of AbsoluteCreation.

Condition: the invocation time of scheduleAbsoluteBurst()

does not respect ABSOLUTE_MILT.

3.1.5

4.13

RelativeMILT Applies to: an active instance of RelativeCreation.

Condition: the invocation time of scheduleRelativeBurst()

does not respect RELATIVE_MILT.

3.1.4

4.13

RetuningMILT Applies to: an active instance of Retuning.

Condition: the invocation time retune() does not respect

RETUNING_MILT.

3.1.12

4.6

TuningMILT Applies to: an active instance of InitialTuning.

Condition: the invocation time of setTuning() does not

respect TUNING_MILT.

3.1.11

4.3.3

TxPacketsMILT Applies to: an active instance of SamplesTransmission.

Condition: the invocation time of pushTxPacket() does not

respect TX_PACKET_MILT.

3.1.9

4.6

Table 24 Specification of MILT exceptions

3.2.2 Associated properties

EXCEPTIONS_SUPPORT (see section 4.4) specifies if exceptions are supported.

EXCEPTIONS (see section 4.4) specifies for each exception, if EXCEPTIONS_SUPPORT is equal to

true, how any active instance of a provide service behave when the exception occurs:

▪ Reaction of the provide service,

▪ Need to raise the exception.

3.2.3 Behavior requirements

The applicative handler of an exception <exceptionName> is defined as a part of the radio

application dedicated to handling of <exceptionName> occurrences.

The exception raising of an exception <exceptionName> is defined as branching the execution of

the radio application to an applicative handler of <exceptionName> instead of waiting for the

called operation to return.

The applied PSM (see section 1.1) specifies how exception raising is realized.

An active instance of a provide service, when <exceptionName> occurs and

EXCEPTIONS.<exceptionName>.reaction is equal to fatal, has unspecified behavior.

An active instance of a provide service shall, when <exceptionName> occurs and

EXCEPTIONS.<exceptionName>.reaction is equal to resetting:

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 77
All Rights Reserved.

▪ Trigger a RuntimeReset transition,

▪ If EXCEPTIONS.<exceptionName>.isNotified is equal to true, perform

exception raising.

An active instance of a provide service shall, when <exceptionName> occurs and

EXCEPTIONS.<exceptionName>.reaction is equal to callIgnoring:

▪ Implement no requirement of the nominal execution of the called operation,

▪ If EXCEPTIONS.<exceptionName>.isNotified is equal to true, perform

exception raising.

3.3 Attributes

This section specifies channels attributes referenced by the remainder of the specification.

All channel attributes are virtual: transceiver instances are not required to make them accessible to

radio applications.

3.3.1 Channels attributes

The initial value of a channels attribute is defined as the value of an attribute when channels enter

the OPERATING state (see section 2.3.1).

3.3.1.1 burstCount

burstCount attribute is specified as the number of bursts created since the last entry in the

OPERATING state (see section 2.3).

The associated declaration is specified as:

BurstNumber burstCount;

The initial value of burstCount is specified as 0 (zero).

Value of burstCount is incremented during INITIATING state of CreationControl, as

specified in section 2.3.2.

3.3.1.2 applicableRxPacketsLength

applicableRxPacketsLength attribute is specified as the length of the Rx packets sent by an

Rx channel with pushRxPacket() (see section 3.1.7).

The associated declaration is specified as:

PacketLength applicableRxPacketsLength;

INIT_RX_PACKETS_LENGTH (see section 4.6) specifies the initial value of

applicableRxPacketsLength.

Value of applicableRxPacketsLength is changed by radio applications using

setRxPacketsLength() (see section 3.1.10).

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 78
All Rights Reserved.

3.3.2 Processing attributes

3.3.2.1 applicableTuningPreset

applicableTuningPreset attribute is specified as a reference to the transmit transfer function

(see section 1.2.4) or the receive transfer function (see section 1.2.5) applied by channels during

PROCESSING state (see section 2.3).

The associated declaration is specified as:

TuningPreset applicableTuningPreset;

applicableTuningPreset ranges from 1 (one) to MAX_TUNING_PRESET (see section 4.7).

For channels with no active instance of InitialTuning, the value of

applicableTuningPreset is equal to 1 and cannot be modified.

For channels with an active instance of InitialTuning, no initial value of

applicableTuningPreset is specified.

Value of applicableTuningPreset is controlled by radio applications using setTuning() (see

section 3.1.11).

3.3.2.2 applicableCarrierFreq

applicableCarrierFreq attribute is specified as the carrier frequency (see section 1.2.2.2)

applied by channels during PROCESSING state (see section 2.3).

The associated declaration is specified as:

CarrierFreq applicableCarrierFreq;

applicableCarrierFreq ranges from MIN_CARRIER_FREQ to MAX_CARRIER_FREQ (see

section 4.7).

For channels with no active instance of InitialTuning, INIT_CARRIER_FREQ (see section 4.6)

specifies the value of applicableCarrierFreq at beginning of the first burst.

For channels with an active instance of InitialTuning, no initial value of

applicableCarrierFreq is specified.

Value of applicableCarrierFreq is controlled by radio applications using setTuning() (see

section 3.1.11) and retune() (see section 3.1.12).

3.3.2.3 applicableGain

applicableGain attribute is specified as the transmit gain (see section 1.2.4.4) or the receive

gain (see section 1.2.5) applied by channels during PROCESSING state (see section 2.3).

The associated declaration is specified as:

Gain applicableGain;

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 79
All Rights Reserved.

applicableGain ranges from MIN_GAIN to MAX_GAIN (see section 4.7).

For channels with no active instance of InitialTuning, INIT_GAIN (see section 4.6) specifies

the value of applicableGain at beginning of the first burst.

For channels with an active instance of InitialTuning, no initial value of applicableGain is

specified.

Value of applicableGain is controlled by radio applications using setTuning() (see section

3.1.11) and retune() (see section 3.1.12).

3.3.2.4 applicableLength

applicableLength attribute is specified as the length of the baseband block to be processed by

channels during PROCESSING state (see section 2.3).

The associated declaration is specified as:

BlockLength applicableLength;

Undefined applicableLength is equal to UndefinedBlockLength (see section 3.4.3).

Defined applicableLength ranges from MIN_BLOCK_LENGTH to MAX_BLOCK_LENGTH (see

section 4.7).

No initial value of applicableLength is specified.

Value of applicableLength is controlled by radio applications using creation operations (see

section 2.4.2) and setBlockLength() (see section 3.1.7).

3.3.2.5 sampleCount

sampleCount attribute is specified as the number of samples of the baseband block processed by

channels since entry in the PROCESSING state (see section 2.3).

The associated declaration is specified as:

SampleNumber sampleCount;

The start value of sampleCount is specified as 1 (one) for the first sample of the baseband block.

Value of sampleCount is incremented during PROCESSING state of Channels, as specified in

section 2.3.1.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 80
All Rights Reserved.

3.4 Types

3.4.1 Base assumptions

The IDL keywords used for specification of types are:

▪ For Basic Types:

o 16-bit integers: short, unsigned short,

o 32-bit integers: long, unsigned long,

o 64-bit integers: long long, unsigned long long,

o Others: float, boolean,

▪ For Constructed Types: typedef, struct, enum,

▪ For Template Types: sequence.

This makes the specification compliant with the Full Profile or [Ref5], and with the ULw Profile

augmented by long long and float basic types.

3.4.2 BasebandPacket

BasebandPacket type is specified as a sequence of baseband samples.

The associated declaration is specified as:

typedef sequence <BasebandSample> BasebandPacket;

BasebandPacket is used by pushRxPacket() (see section 3.1.7) and pushTxPacket() (see section

3.1.9).

3.4.3 BlockLength

BlockLength type is specified as a 32-bit unsigned integer number of baseband samples to be

processed by Tx channels or Rx channels during a processing phase.

UndefinedBlockLength is specified as the reserved value specifying an undefined value of

BlockLength.

The associated declarations are specified as:

typedef unsigned long BlockLength;

const BlockLength UndefinedBlockLength = 0xFFFFFF;

BlockLength is used by startBurst() (see section 3.1.3), scheduleRelativeBurst() (see section

3.1.4), scheduleAbsoluteBurst() (see section 3.1.5) and scheduleStrobedBurst() (see section 3.1.6).

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 81
All Rights Reserved.

3.4.4 BasebandSample

BasebandSample type is specified as the structure representing baseband samples, with field

valueI for the in-phase component and field valueQ for the quadrature component (see section

1.2.2.1).

The associated declaration is specified as:

struct BasebandSample {IQ valueI, IQ valueQ};

BasebandSample is used by declaration of IQ type (see section 3.4.11).

3.4.5 BurstNumber

BurstNumber type is specified as a 32-bit unsigned integer that specifies a burst number.

The associated declaration is specified as:

typedef unsigned long BurstNumber;

BurstNumber is used by setTuning() (see section 3.1.11) and burstCount attribute (see 3.3.1.1).

3.4.6 CarrierFreq

CarrierFreq type is specified as an unsigned integer that specifies a carrier frequency (fc).

CARRIER_FREQ_TYPE (see section 4.3) specifies if CarrierFreq is 32-bit or 64-bit.

A CarrierFreq value is expressed in hertz (Hz).

UndefinedCarrierFreq is specified as the reserved value specifying an undefined value of

CarrierFreq.

The associated declarations are specified as, if CARRIER_FREQ_TYPE is equal to 32bit:

typedef unsigned long CarrierFreq; // in Hz

const CarrierFreq UndefinedCarrierFreq = 0xFFFFFFFF;

The associated declarations are specified as, if CARRIER_FREQ_TYPE is equal to 64bit:

typedef unsigned long long CarrierFreq; // in Hz

const CarrierFreq UndefinedCarrierFreq = 0xFFFFFFFFFFFFFFFF;

CarrierFreq is used by setTuning() (see section 3.1.11) and retune() (see section 3.1.12).

3.4.7 Delay

Delay type is specified as an unsigned integer that specifies a delay from the start time of an

ongoing processing phase.

DELAY_TYPE (see section 4.3) specifies if Delay is 32-bit or 64-bit.

A Delay value is expressed in nanoseconds (ns).

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 82
All Rights Reserved.

UndefinedDelay is specified as the reserved value specifying an undefined value of Delay.

The associated declarations are specified as, if DELAY_TYPE is equal to 32bit:

typedef unsigned long Delay; // in ns

const Delay UndefinedDelay = 0xFFFFFFFF;

The associated declarations are specified as, if DELAY_TYPE is equal to 64bit:

typedef unsigned long long Delay; // in ns

const Delay UndefinedDelay = 0xFFFFFFFFFFFFFFFF;

Delay is used by scheduleRelativeBurst() (see section 3.1.4), scheduleStrobedBurst() (see section

3.1.6) and retune() (see section 3.1.12).

3.4.8 Error

Error type is specified as an enumeration identifying an error.

The associated declaration is specified as:

enum Error {

 errorDelayedTuning,

 errorTuningTimeout,

 errorDelayedFirstSample,

 errorFirstSampleTimeout,

 errorTransmissionUnderflow,

 errorReceptionOverflow,

 errorShorterTransmittedBlock,

 errorLongerTransmittedBlock};

Error is used by notifyError() (see section 3.1.14.1).

3.4.9 Event

Event type is specified as an enumeration identifying an event.

The associated declaration is specified as:

enum Event {

 eventProcessingStart,

 eventProcessingStop,

 eventSilenceStart,

 eventSilenceStop};

Event is used by notifyEvent() (see section 3.1.13.1).

3.4.10 Gain

Gain type is specified as a signed 16-bit integer that specifies a gain (G).

A Gain value is expressed in tenths of decibels (1/10 dB).

UndefinedGain is specified as the reserved value specifying an undefined value of Gain.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 83
All Rights Reserved.

The associated declarations are specified as:

typedef short Gain; // in 1/10 dB

const Gain UndefinedGain = 0xFFFF;

Gain is used by setTuning() (see section 3.1.11) and retune() (see section 3.1.12).

3.4.11 IQ

IQ type is specified as the representation of I (in-phase) and Q (quadrature) components of a

baseband sample.

IQ_TYPE (see section 4.3) specifies if IQ type is 16-bit, 32-bit or floating point.

Integer values of IQ shall be signed 2-complement MSB-aligned.

The declaration of IQ is specified as, if IQ_TYPE is equal to 16bit:

typedef short IQ;

The declaration of IQ is specified as, if IQ_TYPE is equal to 32bit:

typedef long IQ;

The declaration of IQ is specified as, if IQ_TYPE is equal to floatingPoint,

typdef float IQ;

IQ is used for declaration of BasebandSample type (see section 3.4.4).

3.4.12 MetaData

TxMetaData and RxMetaData types are specified as structures of unspecified fields optionally

used to attach meta-data to transferred baseband packets.

The associated declarations are user-defined, and shall be specified as follows:

typedef struct TxMetaData {

 <user-defined>};

typedef struct RxMetaData {

 <user-defined>};

TxMetaData is used by pushTxPacket() (see section 3.1.9) and RxMetaData is used by

pushRxPacket() (see section 3.1.8).

3.4.13 PacketLength

PacketLength type is specified as a 32-bit unsigned integer that identifies the length of a packet.

The associated declarations are specified as:

typedef unsigned long PacketLength;

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 84
All Rights Reserved.

PacketLength is used by setRxPacketsLength() (see section 3.1.10) and

applicableRxPacketsLength (see section 3.3.1.2).

3.4.14 SampleNumber

SampleNumber type is specified as a 32-bit unsigned integer that specifies a sample number.

The associated declaration is specified as:

typedef unsigned long SampleNumber;

SampleNumber is used by indicateGain() (see section 3.1.15.1) and sampleCount attribute (see

3.3.1.2).

3.4.15 StrobeSource

StrobeSource type is specified as an enumeration that specifies the referenced strobe source for

strobed creation of a burst, as specified in section 3.1.6.

The associated declaration is specified as:

enum StrobeSource {

 ApplicationStrobe,

 TimeRef_PPS,

 GNSS_PPS,

 UserStrobe1,

 UserStrobe2,

 UserStrobe3,

 UserStrobe4};

StrobeSource is used by scheduleStrobedBurst() (see section 3.1.6).

3.4.16 TimeSpec

TimeSpec type is specified as a structure that specifies a value of transceiver time, composed of

32-bit unsigned integer fields for seconds and nanoseconds.

The seconds field value is expressed in seconds (s).

The nanoseconds field value is expressed in nanoseconds (ns).

UndefinedTimeSpec is specified as the reserved value specifying an undefined value of

TimeSpec.

The associated declarations are specified as:

struct TimeSpec {

 unsigned long seconds, // in seconds

 unsigned long nanoseconds}; // in nanoseconds (<1.000.000.000)

const TimeSpec UndefinedTimeSpec = {0xFFFFFFFF, 0xFFFFFFFF};

TimeSpec is used by scheduleAbsoluteBurst() (see section 3.1.5), getCurrentTime() and

getLastStartTime() (see section 3.1.15).

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 85
All Rights Reserved.

3.4.17 TuningPreset

TuningPreset type is specified as a 16-bit unsigned integer that identifies a tuning preset.

UndefinedTuningPreset is specified as the reserved value specifying an undefined value of

TuningPreset.

The associated declarations are specified as:

typedef unsigned short TuningPreset;

const TuningPreset UndefinedTuningPreset = 0xFFFF;

TuningPreset is used by setTuning() (see section 3.1.11).

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 86
All Rights Reserved.

4 Properties

This section specifies the Transceiver Properties, which characterize a transceiver instance, once it

has been reconfigured in accordance to needs of the supported radio application.

4.1 Introduction

4.1.1 Properties

A property is defined as an attribute of a transceiver instance which value is defined when the

channels have reached the CONFIGURED state.

The value of a property cannot be modified until the channels have exited the CONFIGURED state.

Note: future versions of the specification may enable modification of property values.

The remainder of the section specifies properties and their base name, also denoted <BaseName>.

Depending on cases, a unique property can fully characterize a transceiver instance, or multiple

properties can be required.

4.1.2 Properties naming

The name of a unique property shall be the <BaseName> of the property.

The names of multiple properties are constructed from the <BaseName> of the property with usage

of prefixes or postfixes.

The name of multiple properties that differ between Tx channels and Rx channels shall be

constructed with TX_ and RX_ prefixes added before the <BaseName>.

A property which base name starts with TX_ (resp. RX_) only applies to Tx channels (resp. Rx

channels).

The name of multiple properties that differ according to conditions shall be constructed with the

condition-dependent <Condition> postfixes added after the <BaseName> and a separation

composed of two (2) underscores (__).

Any conditions and associated <Condition> postfixes can be user-defined.

For rapidity properties, section 4.8 specifies standard conditions and <Condition> postfixes.

4.1.3 Portability engineering support

The configuration expectations of a radio application are defined as the properties values of each

used transceiver instance required for correct operation after the CONFIGURED state is reached.

The configuration capabilities of a transceiver implementation are defined as the properties values

possibly supported by the transceiver after the CONFIGURED state is reached.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 87
All Rights Reserved.

Porting feasibility can be evaluated through comparison of the radio application’s configuration

expectations with transceiver’s configuration capabilities.

Note: derived specifications may standardize machine readable meta-data for expression of

configuration expectations, enabling automation of porting feasibility evaluations and, for some

advanced implementations, of the configuration of the transceiver instances.

4.1.4 Profiles

A profile of the specification is defined as a standard that specifies values of properties for radio

applications and transceivers to facilitate or even guarantee that porting of any compliant radio

application is feasible on any compliant transceiver implementation.

Note: development of profiles is out of the scope of the specification, but may be standardized by

derived specifications.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 88
All Rights Reserved.

4.2 Structure

A structure property is defined as a property that specifies an aspect related to the structure of a

transceiver instance.

Structure properties are specified by the following table:

Base name Type Description See §

TX_CHANNELS unsigned short Applies to: any transceiver instance.

Specifies: number of Tx channels (equal to number of

active instances of SamplesTransmission).

1.2.1

RX_CHANNELS unsigned short Applies to: any transceiver instance.

Specifies: number of Rx channels (equal to number of

active instances of SamplesReception).

1.2.1

DUPLEX Enumeration

(see below)

Applies to: a duplex transceiver (TX_CHANNELS > 0 and

RX_CHANNELS > 0).

Specifies: duplex type of the transceiver instance:

▪ fullDuplex,

▪ halfDuplex.

1.2.1

TX_SHAPING Enumeration

(see below)

Applies to: Tx channels.

Specifies: shaping of Tx bursts:

▪ nominal,

▪ specific.

1.2.4

TX_SERVICES ActiveServices

(see below)
Applies to: Tx channels.

Specifies: for each service except

SamplesTransmission, if one active instance is

attached to Tx channels.

1.3.3

RX_SERVICES ActiveServices

(see below)
Applies to: Rx channels.

Specifies: for each service except SamplesReception,

if one active instance is attached to Rx channels.

1.3.3

TIME_COUPLING Enumeration

(see below)

Applies to: channels with active instance of

AbsoluteCreation.

Specifies: coupling of transceiver time:

▪ autonomous: uncorrelated with any other time,

▪ coupled: identical to another time,

▪ coupledToTerminalTime: identical to

Terminal Time of Timing Service API (see

[Ref7]).

3.1.5

Table 25 Structure properties

The declaration of DUPLEX is specified as:

enum DUPLEX {fullDuplex, halfDuplex};

The declaration of TX_SHAPING is specified as:

enum TX_SHAPING {nominal, specific};

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 89
All Rights Reserved.

The declarations for TX_SERVICES and RX_SERVICES are specified as:

typedef boolean isActive;

typedef struct {

 // Provide services

 isActive reset,

 isActive radioSilence,

 isActive directCreation,

 isActive relativeCreation,

 isActive absoluteCreation,

 isActive strobedCreation,

 isActive termination,

 isActive rxPacketsLengthControl,

 isActive initialTuning,

 isActive retuning,

 isActive gainLocking,

 isActive timeAccess,

 isActive applicationStrobe,

 // Use services

 isActive events,

 isActive errors

 isActive gainChanges,

} ActiveServices;

ActiveServices TX_SERVICES;

ActiveServices RX_SERVICES;

The following consistency conditions apply to fields of TX_SERVICES and RX_SERVICES:

▪ At least one among directCreation, relativeCreation, absoluteCreation

and strobedCreation is equal to true,

▪ rxPacketsLengthControl of TX_SERVICES is equal to false,

▪ timeAccess is equal to false if relativeCreation is equal to false,

▪ applicationStrobe is equal to false if strobedCreation is equal to false.

The declaration of TIME_COUPLING is specified as:

enum TIME_COUPLING {autonomous, coupled, coupledToTerminalTime};

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 90
All Rights Reserved.

4.3 Behavior

A behavior property is defined as a property that specifies an aspect relative to the behavior of a

transceiver instance.

Behavior properties are specified by the following table:

Base name Type Description See §

TUNING_ASSOCIATION Enumeration

(see below)

Applies to: channels with an active instance of

InitialTuning.

Specifies: search condition among stored tuning

parameters sets applicable during INITIATING:

▪ sequential,

▪ burstReferencing.

2.3.2

AGC Enumeration

(see below)

Applies to: Rx channels.

Specifies: nature of the implemented AGC:

▪ noAGC,

▪ earlyControl,

▪ permanentControl.

2.3.1

ALC Enumeration

(see below)

Applies to: Tx channels.

Specifies: nature of the implemented ALC:

▪ noALC,

▪ activeALC.

2.3.1

TUNING_TIMEOUT unsigned long Applies to: channels with an active instance of

InitialTuning, if

ERRORS.errTuningDelayed.reaction is equal to

mitigating.

Specifies: timeout value, in nanoseconds (ns), for

triggering of errorTuningTimeout.

3.1.14

1ST_SAMPLE_TIMEOUT unsigned long Applies to: Tx channels with at least one active instance

of timely creation services, if

ERRORS.err1stSampleDelayed.reaction is equal

to mitigating.

Specifies: timeout value, in nanoseconds (ns), for

triggering of error1stSampleTimeout.

3.1.14

Table 26 Behavior properties

The declaration of TUNING_ASSOCIATION is specified as:

enum TUNING_ASSOCIATION {sequential, burstReferencing};

The declaration of AGC is specified as:

enum AGC {noAGC, startupAGC, permanentAGC};

The declaration of ALC is specified as:

enum ALC {noALC, activeALC};

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 91
All Rights Reserved.

4.4 Notifications

A notification property is defined as a property that specifies an aspect relative to notifications

made by a transceiver instance to the radio application.

Notification properties are specified by the following table:

Base name Type Description See §

EXCEPTIONS_SUPPORT boolean Applies to: all channels.

Specifies: if exceptions are supported.

3.2

EXCEPTIONS Structure

(see below)

Applies to: all channels.

Specifies: an exceptionHandling field for each

standard exception, which specifies the reaction to

occurrences of the exception and if the exception is

raised to the radio application with the exception

notification mechanism.

3.2

EVENTS Structure

(see below)

Applies to: channels with an active instance of Events.

Specifies: an isNotified field for each event, which

specifies if occurrences are notified to the radio

application with notifyEvent().

3.1.13

ERRORS Structure

(see below)

Applies to: channels with an active instance of Errors.

Specifies: an errorHandling field for each error,

which specifies the reaction to occurrences of the error

and if occurrences are notified to the radio application

with notifyError().

3.1.14

Table 27 Notification properties

The declarations for ERRORS are specified as:

typedef struct{

 enum reaction {fatal, reset, mitigation},

 boolean isNotified}

errorHandling;

struct ERRORS {

 errorHandling error1stSampleDelayed,

 errorHandling error1stSampleTimeout,

 errorHandling errorBurstOverlap,

 errorHandling errorRxOverflow,

 errorHandling errorShorterTxBlock,

 errorHandling errorTxUnderflow,

 errorHandling errorTuningDelayed,

 errorHandling errorTuningTimeout};

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 92
All Rights Reserved.

The declarations for EXCEPTIONS are specified as:

typedef struct{

 enum reaction {fatal, resetting, callIgnoring}}

 boolean isRaised}

exceptionHandling;

struct EXCEPTIONS {

 // General exceptions

 exceptionHandling NoAlternateReferencing,

 exceptionHandling NoOngoingProcessing,

 exceptionHandling StrobeSource,

 // Range exceptions

 exceptionHandling MaxBlockLength,

 exceptionHandling MinBlockLength,

 exceptionHandling MaxCarrierFreq,

 exceptionHandling MinCarrierFreq,

 exceptionHandling MaxFromOngoing,

 exceptionHandling MinFromOngoing,

 exceptionHandling MinFromPrevious,

 exceptionHandling MaxFromPrevious,

 exceptionHandling MaxFromStrobe,

 exceptionHandling MinFromStrobe,

 exceptionHandling MaxGain,

 exceptionHandling MinGain,

 exceptionHandling MaxNanoseconds,

 exceptionHandling MaxRxPacketsLength,

 exceptionHandling MaxTuningPreset,

 exceptionHandling MaxTxPacketsLength

 // MILT exceptions

 exceptionHandling AbsoluteMILT,

 exceptionHandling RelativeMILT,

 exceptionHandling RetuningMILT,

 exceptionHandling TuningMILT,

 exceptionHandling TxPacketsMILT};

The declarations for EVENTS are specified as:

typedef boolean isNotified;

struct EVENTS {

 isNotified eventProcessingStart,

 isNotified eventProcessingStop,

 isNotified eventSilenceStart,

 isNotified eventSilenceStop};

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 93
All Rights Reserved.

4.5 Interface declaration

An interface declaration property is defined as a property that specifies an aspect relative to the

declaration of a service interface.

Interface declaration properties are specified by the following table:

Base name Type Description See §

CARRIER_FREQ_TYPE Enumeration

(see below)

Applies to: CarrierFreq type.

Specifies: type used (32-bit or 64-bit).

3.4.6

DELAY_TYPE Enumeration

(see below)

Applies to: Delay type.

Specifies: type used (32-bit or 64-bit).

3.4.7

IQ_TYPE Enumeration

(see below)

Applies to: IQ type.

Specifies: type used (16-bit, 32-bit or floating point).

3.4.11

TX_META_DATA boolean Specifies if user-defined meta-data are attached to the Tx

packets forwarded to Tx channels.

3.1.9

RX_META_DATA boolean Specifies if user-defined meta-data are attached to the Rx

packets obtained from Rx channels.

3.1.8

Table 28 Interface declaration properties

The associated declarations are specified as:

enum CARRIER_FREQ_TYPE {int32, int64};

enum DELAY_TYPE {int32, int64};

enum IQ_TYPE {int16, int32, float32};

4.6 Initialization

An initialization property is defined as a property that specifies the conditions to be met by a

transceiver instance when the CONFIGURED state is reached by its Tx channels and Rx channels.

Initialization properties are specified by the following table:

Base name Type Description See §

INIT_RX_PACKETS_LENGTH PacketLength

(see § 3.4.12)
Applies to: all Rx channels.

Specifies: initial value of

applicableRxPacketsLength.

3.3.1

INIT_CARRIER_FREQ CarrierFreq

(see § 3.4.6)
Applies to: channels with no active instance of

InitialTuning.

Specifies: the value of

applicableCarrierFreq at beginning of the

first burst.

3.3.2

INIT_GAIN Gain

(see § 3.4.10)
Applies to: channels with no active instance of

InitialTuning.

Specifies: the value of applicableGain at

beginning of first burst.

3.3.2

Table 29 Initialization properties

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 94
All Rights Reserved.

4.7 Parameters validity

A parameter validity property is defined as a property that specifies the validity conditions

applicable to a parameter of a primitive of a service interface.

Parameters validity properties are specified by the following table:

Base name Type Description See §

MIN_BLOCK_LENGTH

MAX_BLOCK_LENGTH

BlockLength

(see § 3.4.3)
Applies to: requestedLength not equal to

UndefinedBlockLength in a call to a creation

operation.

Specifies: minimum and maximum value.

3.1.3

3.1.4

3.1.5

3.1.6

3.1.7

ALTERNATE_REFERENC

ING

boolean Applies to: requestedAlternate in a call to

scheduleRelativeBurst().

Specifies: if true value is supported.

3.1.4

MIN_FROM_PREVIOUS

MAX_FROM_PREVIOUS

Delay

(see § 3.4.7)
Applies to: requestedDelay in a call to

scheduleRelativeBurst().

Specifies: minimum and maximum value.

3.1.4

STROBE_SOURCES Structure

(see below)

Applies to: requestedStrobeSource in

scheduleStrobedBurst().

Specifies: for each boolean field attached to a strobe

source, if the corresponding value of

requestedStrobeSource is supported.

3.1.6

MIN_FROM_STROBE

MAX_FROM_STROBE

Delay

(see § 3.4.7)
Applies to: requestedDelay in a call to

scheduleStrobedBurst().

Specifies: minimum and maximum value.

3.1.6

MAX_PACKETS_LENGTH PacketLength

(see § 3.4.12)
Applies to: length of txPacket in a call to pushTxPacket()

or requestedLength in a call to setRxPacketsLength().

Specifies: maximum value.

Note: minimum value is constant and equal to 1.

3.1.9

3.1.10

MAX_TUNING_PRESET TuningPreset

(see § 3.4.14)
Applies to: requestedPreset in a call to setTuning().

Specifies: maximum value.

Note: minimum value is constant and equal to 1.

3.1.11

MIN_CARRIER_FREQ

MAX_CARRIER_FREQ

CarrierFreq

(see § 3.4.6)
Applies to: requestedFrequency not equal to

UndefinedCarrierFreq in a call to setTuning() or

retune().

Specifies: minimum and maximum value.

3.1.11

3.1.12

MIN_GAIN

MAX_GAIN

Gain

(see § 3.4.10)
Applies to: requestedGain not equal to UndefinedGain

in a call to setTuning() or retune().

Specifies: minimum and maximum value.

3.1.11

3.1.12

MIN_FROM_ONGOING

MAX_FROM_ONGOING

Delay

(see § 3.4.7)
Applies to: requestedDelay in a call to retune().

Specifies: minimum and maximum value.

3.1.12

Table 30 Parameters validity properties

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 95
All Rights Reserved.

The declaration of STROBE_SOURCES is specified as:

typedef boolean isSupported;

struct STROBE_SOURCES {

 isSupported ApplicationStrobe,

 isSupported TimeRef_PPS,

 isSupported GNSS_PPS,

 isSupported UserStrobe1,

 isSupported UserStrobe2,

 isSupported UserStrobe3,

 isSupported UserStrobe4};

4.8 Rapidity

A rapidity property is defined as a property that specifies the rapidity of execution of a transceiver

instance.

Rapidity properties are specified as indicated in the following table:

Base name Type Description See §

INTER-PROCESSING unsigned long Applies to: channels.

Specifies: minimum time, in nanoseconds (ns), between:

▪ Termination time of a burst (a StopProcessing

transition),

▪ Activation time of the next burst

(StartProcessing transition).

1.2.6

INTER-BURST unsigned long Applies to: channels.

Specifies: minimum time, in nanoseconds (ns), between:

▪ Stop time of a burst (end of its core burst, at its

start time plus block length / 𝐹𝑠
𝐵𝐵),

▪ Start time of the next burst (end of its core burst).

1.2.6

TUNING_DURATION unsigned long Applies to: channels with an active instance of Tuning.

Specifies: maximum duration, in nanoseconds (ns), of

the TUNING state.

2.3.1

RETUNING_DURATION unsigned long Applies to: channels with an active instance of

Retuning.

Specifies: maximum duration, in nanoseconds (ns), of

the RETUNING state.

2.3.4

EARLY_AGC_DELAY unsigned long Applies to: Rx channels with AGC equal to

earlyControl.

Specifies: delay available after start time of a Rx burst

for the AGC to have set the receive gain.

2.3.1

Table 31 Rapidity properties

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 96
All Rights Reserved.

Tuning conditions are specified as indicated in the following table:

<Condition> postfix Condition

NO_TUNING_CHANGE Applies to: INTER-BURST, INTER-PROCESSING and TUNING-DURATION of channels

with an active instance of InitialTuning.

Condition: the applicable tuning parameters set specifies no tuning change

(requestedTuningPreset is equal to undefinedTuningPreset, requestedCarrierFreq

is equal to UndefinedCarrierFreq and requestedDelay is equal to

UndefinedDelay).

NEW_TUNING_PRESET Applies to: INTER-BURST, INTER-PROCESSING and TUNING-DURATION of channels

with an active instance of InitialTuning.

Condition: the applicable tuning parameters set specifies a new tuning preset

(requestedTuningPreset is not equal to undefinedTuningPreset).

NEW_FREQUENCY Applies to: INTER-BURST, INTER-PROCESSING and TUNING-DURATION of channels

with an active instance of InitialTuning and RETUNING_DURATION of channels with

an active instance of Retuning.

Condition: the applicable tuning parameters set specifies a new frequency with no

tuning preset change (requestedTuningPreset is equal to undefinedTuningPreset

and requestedCarrierFreq is not equal to UndefinedCarrierFreq).

NEW_GAIN Applies to: INTER-BURST, INTER-PROCESSING and TUNING-DURATION of channels

with an active instance of InitialTuning and RETUNING_DURATION of channels with

an active instance of Retuning.

Condition: the applicable tuning parameters set specifies a new gain with no other

change (requestedTuningPreset is equal to undefinedTuningPreset,

requestedCarrierFreq is equal to UndefinedCarrierFreq and requestedDelay is

not equal to UndefinedDelay).

Table 32 Tuning conditions

See section 2.3.2.1.3 for further information regarding applicable tuning parameters set.

Duplex conditions are specified as indicated in the following table:

<Condition> postfix Condition

TX-TX Applicable to: INTER-BURST, INTER-PROCESSING and TUNING-DURATION of all Tx

channels.

Condition: the consecutive bursts are Tx bursts.

RX-RX Applicable to: INTER-BURST, INTER-PROCESSING and TUNING-DURATION all Rx

channels.

Condition: the consecutive bursts are Rx bursts.

TX-RX Applicable to: INTER-BURST, INTER-PROCESSING and TUNING-DURATION of half-

duplex transceivers.

Condition: the previous burst is a Tx burst and the next burst is a Rx burst.

RX-TX Applicable to: INTER-BURST, INTER-PROCESSING and TUNING-DURATION half-

duplex transceivers.

Condition: the previous burst is a Tx burst and the next burst is a Rx burst.

Table 33 Duplex conditions

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 97
All Rights Reserved.

4.9 Storage

A storage property is defined as a property that specifies the number of calls to certain operations a

transceiver instance can store before blocking further calls until storage is freed.

Storage properties are specified by the following table:

Base name Type Description See §

CREATION_STORAGE unsigned

short
Applies to: all Tx channels and Rx channels.

Specifies: maximum number of creation operations calls

the transceiver instance can store.

3.1.3

3.1.4

3.1.5

3.1.6

TUNING_STORAGE unsigned

short
Applies to: channels with an active instance of

InitialTuning.

Specifies: maximum number of setTuning() calls the

transceiver instance can store.

3.1.11

TX_BASEBAND_STORAGE unsigned long Applies to: Tx channels.

Specifies: maximum number of baseband samples the

transceiver instance can store for each active instance of

SamplesTransmission.

3.1.9

Table 34 Storage properties

4.10 Levels

A level property is defined as a property that specifies the range of signal levels at the boundary of

channels.

Level properties are specified by the following table:

Base name Type Description See §

TX_MIN_BASEBAND_LEVEL

TX_MAX_BASEBAND_LEVEL

short Applies to: Tx channels.

Specifies: minimum and maximum values of the level

of baseband signal at input of Tx channels, in tenth of

decibels relative to full scale (1/10 dBFS).

2.3.1

RX_MIN_RADIO_LEVEL

RX_MAX_RADIO_LEVEL

short Applies to: Rx channels.

Specifies: minimum and maximum values of the level

of radio signal at input of Rx channels, in tenth of

decibels relative to one milliwatt (1/10 dBm).

2.3.1

RX_MIN_BASEBAND_LEVEL

RX_MAX_BASEBAND_LEVEL

short Applies to: Rx channels.

Specifies: minimum and maximum values of the level

of baseband signal at output of Rx channels, in tenth of

decibels relative to full scale (1/10 dBFS).

2.3.1

Table 35 Level properties

4.11 Channelization

A channelization property is defined as a property that specifies each tuning preset supported by a

transceiver instance.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 98
All Rights Reserved.

Channelization properties are specified by the following table:

Base name Type Description See §

CHANNEL_MASK Structure

(see below)

Applies to: all tuning presets.

Specifies: the channel mask for the transfer function, to

be respected during the PROCESSING state.

2.3.1

SAMPLING_FREQ_ACC unsigned long Applies to: channels.

Specifies: accuracy of the baseband sampling frequency,

in hertz (Hz), to be respected during the PROCESSING

state.

2.3.1

CARRIER_FREQ_ACC CarrierFreq Applies to: channels.

Specifies: accuracy of the carrier frequency, to be

respected during the PROCESSING state.

2.3.1

GAIN_ACC Gain Applies to: channels.

Specifies: accuracy of the gain, to be respected during

the PROCESSING state.

2.3.1

Table 36 Channelization properties

One property instance of CHANNEL_MASK is specified for each value of tuning preset between 1

and MAX_TUNING_PRESET (see section 4.7).

The associated names are specified as:

▪ CHANNEL_MASK if MAX_TUNING_PRESET is equal to 1,

▪ CHANNEL_MASK___<PresetNumber> if MAX_TUNING_PRESET is greater than 1.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 99
All Rights Reserved.

The fields of channel masks are specified by the following figure:

−𝐹𝑠
𝐵𝐵/2

 ()

𝑓 ()

.channelBandwidth

.maxRipple

.upperRejectionGain

.lowerRejectionFreq

.upperRejectionFreq

 ()

.lowerRejectionGain

.lowerRejectionSlope

.lowerRejectionSlope.upperRejectionSlope

𝐺 (n)

𝑓 ()
0

 𝑓

.channelBandwidth

.groupDelayDistorsion

−

.
 ()

0

 ()

ripple = max - min

max

min

+𝐹𝑠
𝐵𝐵/2

−𝐹𝑠
𝐵𝐵/2 +𝐹𝑠

𝐵𝐵/2

Figure 56 Specification of fields of channel masks

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 100
All Rights Reserved.

The declaration for CHANNEL_MASK is specified as, taking the previous figure as reference for

specification of the structure’s fields:

typedef struct {

 // Sampling frequency

 unsigned long basebandSamplingFreq, // in Hz

 // Useful signal

 unsigned long channelBandwidth, // in Hz

 unsigned short ripple, // in thenth of dB

 unsigned short groupDelayDistorsion, // in ns

 // Proximity protection

 unsigned short lowerRejectionFreq, // in Hz

 unsigned short lowerRejectionGain, // in dB

 unsigned short lowerRejectionSlope, // in dB/kHz

 unsigned short upperRejectionFreq, // in Hz

 unsigned short upperRejectionGain, // in dB

 unsigned short upperRejectionSlope // in dB/kHz

} ChannelMask;

4.12 Temporal accuracy

A temporal accuracy property is defined as a property that specifies the temporal accuracy of a

transceiver instance.

The type of a temporal accuracy property is specified as unsigned long.

Temporal accuracy properties are specified by the following table:

Base name Description See §

START_TIME_ACC Applies to: channels with at least one active instance of a timely creation

service.

Specifies: maximum absolute difference, in nanoseconds (ns), between:

▪ Actual start time of a created burst,

▪ Start time specified by the creation operation.

2.3.2

CURRENT_TIME_ACC Applies to: channels with an active instance of TimeAccess.

Specifies: maximum absolute difference, in nanoseconds (ns), between:

▪ Actual return time of getCurrentTime(),

▪ Returned currentTime value.

3.1.15

LAST_START_TIME_ACC Applies to: channels with an active instance of TimeAccess.

Specifies: maximum absolute difference, in nanoseconds (ns), between:

▪ Actual start time of the last burst,

▪ Returned lastStartTime value.

3.1.15

Table 37 Temporal accuracy properties

4.13 Invocation lead time

The invocation lead time of a provide service primitive is defined as the time elapsing, in

nanoseconds (ns), between invocation of the primitive by the radio application and occurrence

within the transceiver instance of the future related event.

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 101
All Rights Reserved.

The invocation lead time property of a provide service is defined as a property that specifies the

minimum value of invocation lead time supported by the service.

The type of an invocation lead time property is specified as unsigned long.

Invocation lead time properties are specified by the following table:

Base name Provide service primitive (Future) Related event See §

RELATIVE_MILT RelativeCreation.

scheduleRelativeBurst()
Start time of the burst. 3.1.4

ABSOLUTE_MILT AbsoluteCreation.

scheduleAbsoluteBurst()
Start time of the burst. 3.1.5

STROBED_MILT StrobedCreation.

scheduleStrobedBurst()
Start time of the burst. 3.1.6

TX_PACKET_MILT SamplesTransmission.

pushTxPacket()
First sample of the pushed packet is used

by up-conversion.

3.1.9

BLOCK_LENGTH_MILT Termination.

setBlockLength
Stop time of the ongoing processing phase.

If value of requestedLength is not equal to
UndefinedBlockLength

3.1.7

TUNING_MILT InitialTuning.

setTuning()
Usage of the creation operation of the

burst by CreationControl.

3.1.11

RETUNING_MILT Retuning.retune() Start of the RETUNING state.

If value of requestedDelay is not equal to
UndefinedDelay

3.1.12

Table 38 Invocation lead time properties

4.14 Invocation delay

The invocation delay of a use service primitive is defined as the time elapsing, in nanoseconds (ns),

between occurrence within a transceiver instance of the past related event and invocation of the

primitive by the transceiver instance.

The invocation delay property of a use service is defined as a property that specifies the maximum

value of invocation delay guaranteed by the service.

The type of an invocation delay property is specified as unsigned long.

Invocation delay properties are specified by the following table:

Base name Use service primitive (Past) Related event See §

PUSH_RX_PACKET_MID SamplesReception.

pushRxPacket()
Down-conversion outputs the last sample

of the pushed packet.

3.1.8

NOTIFY_EVENT_MID Events.

notifyEvent()
The notified error occurs. 3.1.13

NOTIFY_ERROR_MID Errors.

notifyError()
The notified error is detected. 3.1.14

INDICATE_GAIN_MID GainChanges.

indicateGain()
The indicated Gain starts to be applied in

application of an AGC algorithm decision.

3.1.15

Table 39 Invocation delay properties

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 102
All Rights Reserved.

4.15 Worst-case execution time (WCET)

The worst case execution time (WCET) of a service primitive is defined as the maximum length of

time, in nanoseconds (ns), possibly taken between the invocation and the return of the primitive.

The WCET property of a primitive of a provide service is defined as a property that specifies the

maximum value of the WCET of the primitive.

The WCET property of a primitive of a use service is defined as a property that specifies the

maximum value of the WCET of the primitive for correct real-time behavior of the transceiver

instance.

The type of a WCET property is specified as unsigned long.

WCET properties of primitives of provide services are specified by the following table:

Base name Related primitive See §

RESET_WCET Reset::reset() 3.1.1

START_SILENCE_WCET RadioSilence::startRadioSilence() 3.1.2

STOP_SILENCE_WCET RadioSilence::stopRadioSilence() 3.1.2

DIRECT_WCET DirectCreation::startBurst() 3.1.3

RELATIVE_WCET RelativeCreation::scheduleRelativeBurst() 3.1.4

ABSOLUTE_WCET AbsoluteCreation::scheduleAbsoluteBurst() 3.1.5

STROBED_WCET StrobedCreation::scheduleStrobedBurst() 3.1.6

BLOCK_LENGTH_WCET Termination::setBlockLength() 3.1.7

STOP_BURST_WCET Termination::stopBurst() 3.1.7

TX_PACKET_WCET SamplesTransmission::pushTxPacket() 3.1.9

RX_PACKETS_LENGTH_WCET RxPacketsLengthControl::setRxPacketsLength() 3.1.10

TUNING_WCET InitialTuning::setTuning() 3.1.11

RETUNING_WCET Retuning::retune() 3.1.12

LOCK_GAIN_WCET GainLocking::lockGain() 3.1.15

UNLOCK_GAIN_WCET GainLocking::unlockGain() 3.1.16

CURRENT_TIME_WCET TimeAccess::getCurrentTime() 3.1.17

LAST_START_TIME_WCET TimeAccess::getLastStartTime() 3.1.17

TRIGGER_STROBE_WCET ApplicationStrobe::triggerStrobe() 3.1.18

Table 40 WCET properties of provide operations

WCET properties of primitives of use services are specified by the following table:

Base name Related primitive See §

RX_PACKET_WCET SamplesReception::pushRxPacket() 3.1.8

EVENTS_WCET Events::notifyEvent() 3.1.13

ERRORS_WCET Errors::notifyError() 3.1.14

GAIN_CHANGE_WCET GainChanges::indicateGain() 3.1.15

Table 41 WCET properties of use operations

Transceiver Next Task Group
Xcvr Facility

WINNF-08-S-0008-V2.0.0

Copyright © 2009-17 The Software Defined Radio Forum Inc. Page 103
All Rights Reserved.

END OF THE DOCUMENT

